
4 S im u lation

4. 1 Introduction

Simulation by Monte Carlo experimentation is a useful and powerful methodology for
investigating the properties of econometric estimators and tests. The power of the
methodology derives from being able to define and control the statistical environment
in which the investigator specifies the data-generating process (DGP) and generates data
used in subsequent experiments.

Monte Carlo experiments can be used to verify that valid methods of statistical
inference are being used. An obvious example is checking a new computer program or
algorithm. Another example is investigating the robustness of an established estimation
or test procedure to deviations from ::;etting::; where the properties of the procedure are
known.

Even when valid methods are used, they often rely on asymptotic results. We may
want to check whether these provide a good approximation in samples of the size typi­
cally available to the investigators. Also asymptotically equivalent procedures may have
different properties in fi.nite samples. Monte Carlo experiments enable fi nite-sample
comparisons.

This chapter deals with the basic elements common to Monte Carlo experiments:
computer generation of random numbers that mimic the theoretical properties of real­
izations of random variables; commands for repeated execution of a set of instructions;
and machinery for saving, stori11g, and processing the simulation output, generated in
an experiment, to obtain the summary measures that are used to evaluate the proper­
ties of the procedures under study. We provide a series of examples to illustrate various
aspects of Monte Carlo analyses.

The chapter appears early in the book. Simulation is a powerful pedagogic tool for
exposition and illustration of statistical concepts. At the simplest level, we can use
pseudorandom samples to illustrate distributional features of artificial data. The goal
of this chapter is to use simulation to study the distributional and moment properties
of statistics in certain idealized statistical environments. Another possible use of the
Monte Carlo methodology is to check the correctness of computer code. Many applied
studies use methods complex enough that it is . easy to make mistakes. Often these
mistakes could be detected by an appropriate simulation exercise. We believe that sim­
ulation is greatly underutilized, even though Monte Carlo experimentation is relatively
straightforward in Stata.

113

114 Chapter 4 Simulation

4.2 Pseudorandom-number generators: Introduction
Suppose we want to use simulation to study the properties of the ordinary least-squares
estimator (OLS) estimator in the linear regression model with normal errors. Then,
at the minimum, we need to make draws from a specified normal distribution. The
literature on (pseudo) random-number generation contains many methods of generating
such sequences of numbers. When we use packaged functions, we usually do not need to
know the details of the method. Yet the match between the theoretical and the sample
properties of the draws does depend upon such details.

Stata introduced a new suite of fa::;t and easy-to-use random-number functions (gen­
erators) in micl-2008. The::;e functions begin with the letter r (from random) and can be
readily installed v ia an update to ver::;ion 10 . The suite include::; the uniform, normal,
binomial, gamma, and Poi::>son functions that we will u::;e in thi::; chapter, as well as
several others that we do not use. The functions for generating pseudorandom numbers
are summarized in help functions.

To a large extent, these new functions obviate the previous methods of using one's
own generators or user-written commands to generate pseudorandom numbers other
than the uniform. Nonetheless, there can sometimes be a need to make draws from
distributions that are not included in the suite. For these draws, the uniform distribution
is often the starting point. The new runif ormO function generates exactly the same
uniform draws as unifom () , which it replaces.

4.2 .1 Uniform random-number generation

The term random-number generation is an oxymoron. It is more accurate to use the
term pseudorandom numbers. Pseudorandom-number generators use deterministic de­
vices to produce long chains of numbers that mimic the realizations from some target
distribution. For uniform random numbers, the target distribution is the uniform dis­
tribution from 0 to 1, for which any value between 0 and 1 is equally likely. Given such
a sequence, methods exist for mapping these into sequences of nonuniform draws from
desired distributions such as the normal.

A standard simple generator for uniform draws uses the deterministic rule X J = (kX j-l + c) mod m, j = 1, . . . , J, where the modulus operator a mod b forms the
remainder when a is divided by b, to produce a sequence of J integers between 0 and
m. Then Rj = Xj/m is a sequence of J numbers betweer. 0 and 1 . If computation is
done using 32-bit integer arithmetic, then m = 231 - 1 and the maximum periodicity is
231 - 1 � 2 . 1 x 109 , but it is easy to select poor values of k, c, and X0 so that the cycle
repeats much more often than that.

This g·enerator is implemented using Stata function runif o m () , a 32-bit KISS gen­
erator that uses good values of k and c. The initial value for the cycle, X 0, is called
the seed. The default is to have this set by Stata, based on the computer clock. For
reproducibility of results, however, it is best to actually set the initial seed by using set
seed. Then, if the program is rerun at a later time or by a different researcher, the
same results will be obtained.

4.2.1 Uniform random-number generation

To obtain and display one draw from the uniform, type

• Single draY of a uniform number
set seed 10101
scalar u = runiform ()
display u

. 16796649

115

This number is internally stored at much greater precision than the eight displayed
digits.

The following code obtains 1,000 d1·aws from the wuform distribution and then
provides some details on these draws:

• 100 0 draYs of uniform numbers
quietly set obs 1000
set seed 10101
generate x = runiformO

list x in 1/5 , clean
X

1 . . 1679665
2. .3197621
3 . . 791 1349
4 . . 7193382
5 . . 5408687

summarize x
Variable 1 Obs

1000

Mean

. 5 150332

Std. Dev. Min Max

. 2934123 .0002845 . 9993234

The 1 ,000 draws have a mean of 0 .515 and a standard deviation of 0.293, close to the
theoretical values of 0.5 and Jl7l2 = 0.289. A histogram, not given, has ten equal­
width bins with heights that range from 0 .8 to 1 .2 , close to the theory of equal heights
of 1.0.

The draws should be serially uncorrelated, despite a deterministic rule being used
to generate the draws. To verify this, we create a time-identifier variable, t, equal to
the observation number (_n), and we use tsset to declare the data to be time series
with time-identifier t. vVe could then use the corrgram, ac, and pac commands to
test whether autocorrelations and partial autocorrelations are zero. We more simply
use pwcorr to produce the fi.rst three autocorrelations, where L2 . x is the x variable
lagged twice and the star (0 . 05) option puts a star on correlations that are statistically
significantly different from zero at level 0.05.

• First three autocorrelations for the uniform draYs
generate t = _n
tsset t

time variable : t , 1 to 1000
delta: 1 unit

116 Cbapter 4 Simulation

p1.1corr x L . x L 2 . x L 3 . x , star (0 . 0 5)

X L . x L2 .x L3 .x

X 1 . 0000
L . x -0.0185 1 . 0000

L2 .x - 0 . 0047 -0 .0199 1 . 0000
L3 .x 0 . 0116 - 0 . 0059 -0 . 0207 1 . 0000

The autocorrelations are low, and none are statistically different from zero at the 0.05
level. Uniform random-number generators used by packages s·,tch as Stata are, of course,
subjected to much more stringent tests than these.

4 .2 .2 Draws from normal

For simulations of standard estimators such as OLS , nonlinear least squares (NLS), and
instrumental variables (rv), all that is needed are draws from the uniform and normal
distributions, because normal errors are a natural starting point and the most common
choices of distribution for generated regressors are normal and uniform.

The command for making draws from the standard normal has the following simple
syntax:

generate varna me = rnormal ()

To make draws from N(m,s2) , the corresponding command is

generate varna m e = rnormal (m , s)

Note that s > 0 is the standard deviation. The arguments m and s can be numbers or
variables.

Draws from the standard normal distribution also can be obtained as a transforma­
tion of draws from the uniform by using the inverse probability transformation method
explained in section 4.4.1 ; that is, by using

generate varname = invnormal(runiform ())

where the new function runifomO replaces uniform () in the older versions.

The following code generates and summarizes three pseudorandom variables with
1,000 observations each. The pseudorandom variables have Cistributions uniform(O, 1) ,
standard normal, and normal with a mean of 5 and a standard deviation of 2 .

• normal and uniform
clear

quietly set obs 1000
set seed 10101
generate uniform = runiformO

II set the seed

I I uniform (0 , 1)

4.2.3 Draws from t, chi-squared, F, gamma, and beta

generate stnormal . � rnormal ()

generate norm5and2 � rnormal (5 ,2)
I I N (0 , 1)

tabstat uniform stnormal norm5and2 , stat(mean s d skeY kurt min max) col(stat)
variable

uniform
stnormal

uorm5and2 ·

mean sd skeYness kurtosis ' min

. 5 150332 .2934123 - . 0899003 1 . 318878 .0002845 . 9993234

.0 109413 1 . 010856 . 0680232 3 . 130058 -2 . 978147 3 . 730844
4 . 995458 1 . 970729 - . 0282467 3 . 050581 -3 . 027987 10 . 80905

117

The sample mean and other sample statistics are random variables; therefore, their
values will, in general, differ from the true population values. As the number of obser­
vations grows, each sample statistic will converge to the population parameter because
each sample statistic is a consistent estimator for the population parameter.

For norm5and2, the sample mean and standard deviation are very close to the the­
oretical values of 5 and 2. Output from tabstat gives a skewness statistic of -0.028
and a kurtosis statistic of 3.051, close to 0 and 3, respectively.

For draws from the truncated normal, see section 4.4.4, and for draws from the
multivariate normal, see section 4.4.5.

4.2.3 Draws from t, chi-squared, F, gamma, and beta

Stata's library of functions contains a number of generators that allow the user to draw
directly from a number of common continuous distributions. The function formats are
similar to that of the rnormal O hmction, and the argument (s) can be a number or a
variable.

Let t(n) denote Students' t distribution with n degrees of freedom, x2(m) denote
the chi-squared distribution with m degrees of freedom, and F(h, n) denote the F dis­
tribution with h and n degrees of freedom. Draws from t(n) and x2 (h) can be made
directly by using the rt (dfl and r.:hi2 (dj) functions. We then generate F(h, n) draws
by transformation because a function for drawing directly from the F distribution is
not available.

The following example generates draws from t (lO) , x2(10) , and F(lO , 5) .

* t , chi-squared, and F Yith constant degrees o f freedom
clear

quietly set obs 2000
set seed 10101
generate x t � rt(10)

generate xc = rchi2 (10)
generate xfn = rchi2 (1 0)I10

generate xfd = rchi2 (10)15
genorate xf = xfnlxfd

II result xt - t (10)

II result xc - chisquared(10)

II result " numerator of F (1 0 , 5)
II result denominator o f F (10 ,5)

II result xf - F(10 ,5)

118 Chapter 4 Simulation

summarize xt XC Xf

Variable Dbs Moan Std. Dev. Min Max

xt 2000 .0295636 1 . 118426 - 5 . 390713 4 . 290518
XC 2000 9 . 967206 4 . 530771 . 7512587 35. 23849
xf 2000 1 . 637549 2 . 134448 . 0511289 34. 40774

The t(10) draws have a sample mean and a standard deviation close to the theoretical
v-alues of 0 and v/10/(10 - 2) = 1.118; the x2(10) draws have a sample mean and
a standard deviation close to the theoretical v-alues of 10 and J25 = 4.4 72; and the
F(10, .5) draws have a sample mean close to the theoretical value of .5/(5 - 2) = 1 . 7.
The sample standard deviation of2 .134 differs from the theoretical standard deviation
of)2 x .sz x 13/(10 x 32 x 1) = 2. 687. This is because of randomness, and a much
larger number of draws eliminates this divergence .

Using rbeta(a , b) , we can draw froin a two-parameter beta with the shape param­
eters a, b > 0, mean a/(a + b) , and variance ab/(a + b)2 (a + b + 1) . Using rgamma(a ,b) ,
we can draw from a two-parameter gamma with the shape parameter a > 0 , scale
parameter b > 0, mean ab, and variance ab2 •

4.2.4 Draws from binomial, Poisson, and negative binomial

Stata functions also generate draws from some leading dbcrete distributiont>. Again the
argument(s) can be a number or a variable:

Let Bin(n,p) denote the binomial distribution with positive integer n trials (n) and
success probability p, 0 < p < 1, and let Poisson(m) denote the Poisson distribution
with the mean or rate parameter m. The rbinomial(n,p) function generates random
draws from the binomiai distribution, and the rpoisson(m) function makes draws from
the Poisson distribution.

We demonstrate these ftmctions with an argument that is a variable so that the
parameters differ across draws.

Independent (but not identically distributed) draws from binomial

As illustration, we consider draws from the binomial distribution, when both the prob­
ability p and the number of trials n may vary over i.

• Discrete r v " s : binomia�
set seed 10101
generate p1 = runiform () I I here p1-uniform (0 , 1)

generate trials = ceil (10•runiform ()) I I here # tria�s varies btYn 1 & 1 0
generate xbin = rbinomial (trials ,p1) II draYs from binomial (n,p1)

4.2.4 Dmws from binomial, Poisson, and negative binomial

summarize p1 trials xbin
Variable

p1
trials

xbin

Dbs

2000
2000
2000

Mean

.5155468
5 .438
2 . 753

Std. Dev. Min Max

.2874989 . OOQ2845 . 9995974
2 . 887616 10
2 . 434328 0 10

119

The DGP setup implies that the number of trials n i s a random variable with an expected
value of 5 .5 and that the probability p is a random variable with an expected value of
0.5. Thus we expect that xbin has a mean of 5 .5 x 0 . .5 = 2 .75 , and this is approximately
the case here.

Independent (but not identically distributed} draws from Poisson

For simulating a Poisson regression DGP, denoted y � Poisson(.u), we need to make
draws that are independent but not identically distributed, with the mean .u varying
across draws because of regTessors.

We do so in two ways. First, let ,U; equal xb=4+2*X with x=rt.inif orm () . Then
4 < Jl.i < 6. Second, let p; equal xb times xg where xg=rgamma (l , l) , which yields
a draw from the gamma distribution with a mean of 1 x 1 = 1 and a variance of
1 x 1 2 = 1 . Then IJ; > 0. In both cases, the setup can be shown to be such that the
ultimate draw has a mean of 5, but the variance differs from 5 for the independent and
identically distlibuted (i .i .d.) Poisson because in neither case are the draws from an
identical distribution. We obtain

• Discrete rv ·s : independent poisson and negbin draws
set seed 10101

generate xb= 4 + 2•runiform0
generate x g = rgamma (1 , 1)
generate xbh = xb•xg
generate xp = rpoisson(5)

generate xp1 = rpoisson(xb)
generate xp2 � - rpoisson(xbh)

summarize xg xb xp xp1 xp2
Variable Dbs Mean

xg
x b
xp

xp1
xp2

2000
2000
2000
2000
2000

1 . 032808
5 . 031094

5 . 024
4 . 976

5 . 1375

II draw from gamma;E(v)=1
II apply multiplicative heterogeneity

II result xp - Poisson(5)

II result xp1 - Poisson(xb)
I I result xp2 - W(xb)

Std. Dev. Min Max

1 . 044434 . 000112 8. 00521
.5749978 4 . 000569 5 . 999195
2 . 300232 0 14
2 . 239851 0 14
5 . 676945 0 44

The xb variable lies between 4 and 6, as expected, and the xg gamma variable has a mean
and variance close to 1 , as expected. For a benchmark comparison, we make draws of xp
from Poisson(5), which has a sample mean close to 5 and a sample standard deviation
close to Y5 = 2.236. Both xpl and xp2 have means close to 5. In the case of xp2,
the model has the multiplicative unobserved heterogeneity term xg that is itself drawn
from a gamma distribution with shape and scale parameter both set to 1 . Introducing

120 Chapter 4 Simulation

this type of heterogeneity means that xp2 is drawn from a distribution with the same
mean as that of xpl, but the variance of the distribution is larger. More specifically,
Var(xp2 lxb) = xb* (l+xb) , using results in section 17.2.2, leading to the much larger
standard deviation for xp2.

The second examp:e makes a draw from the Pois::;on-g<unma mixture, yielding the
negative binomial distribution. The rnbinomial () function draws from a different
parameterization of the negative binomial distribution. For this reason, we draw from
the Pois::;on-gamma mixture here and in chapter 17.

Histograms and density plots

For a vi::;ual depiction, it is often useful to plot a histogTam or kernel density estimate
of the generated random numbers. Here we do this for the draws xc from x2(10) and
xp from Poisson(5) . The results are shown in figure 4 . 1 .

• Example o f histogram and kernel density plus graph combine
quietly tYoYay (histogram xc , Yidth (l)) (kdensity xc , lYidth(thick)) ,

> ti tle("DraYs from chisquared(lO) ")

quietly graph save mus04cdistr.gph, replace
quietly tYoYay (histogr�n xp, discrete) (kdensity xp, lYidth(thick) Y (l)) ,

> title (" DraYs from Poisson(mu) for 5<mu< 6")

. quietly graph save mus04poissdistr.gph, replace

. graph combine mus04cdistr. gpb mus04poissdistr.gph,
> title ("Random-number generation examples " , margin(b=2) size (vlarge))

Random-number generation examples

Draws from chisquared(1 0) Draws from Poisson(mu) for 5<mu<6

30 40

I !:J•lli\!?�;,, Denolty -- kdcn::;tty xc I I k-;iJw,'Ki! Den� lty -- kdonolty xp I
Figure 4 . 1 . x2(10) and Poisson(5) draws

4.3 Distribution of the sample mean

4.3 Distribution of the sample mean

121

As an introductory example of simulation, we demonstrate the central limit theorem
result, (xN - tL)/(cr/VH) ----> N(O, 1) ; i .e . , the sample mean is approximately normally
distributed as N ----> oo. We consider a random variable that has the uniform distribu­
tion, and a sample size of 30.

We begin by drawing a single sample of size 30 of the random variable X that is uni­
formly distributed on (0 , 1) , using the runifom.O random-number function. To ensure
the same results are obtained in future runs of the same code or on other machines, we
use set seed. We have

• Draw 1 sample of size 30 from uniform distribution
quietly set obs 30
set seed 10101
generate x � runiform ()

To see the results, we use summarize and histogram. We have

• Summarize x and produce a histogram
summarize x

Variable ! Dbs Mean

X i 30 .5459987

Std. Dev. Min Max

.2803788 . 0524637 . 9983786

quietly histogram x , width(0 . 1) xtitle("x from one sample ")

.4
x from ooo �amplo

Figure 4 .2 . Histogram for one sample of size 30

The summary statistics show that 30 observations were generated and that for this
sample x = 0 .546. The histogram for this single sample of 30 uniform draws, given in
figure 4.2, looks nothing like the bell-shaped curve· of a normal , because we are sampling
from the uniform distribution. For very large samples, this histogram approaches a
horizontal line with a density value of 1 .

·

122 Chapter 4 Simulation

To obtain the distribution of the sample mean by simulation, we redo the preceding
10,000 times, obtaining 10,000 samples of size 30 and 10,000 sample means x. These
10,000 sample means are draws from the distribution of the sample-mean estimator. By
the central limit theorem, the distribution of the sample-mean estimator has approxi­
mately a normal distribution. Because the mean of a uniform(O, 1) distribution is 0 .5 ,
the mean of the distribution of the sample-mean estimator is 0 .5 . Because the standard
deviation of a uniform(O, 1) distribution is v'l7'i2 and each of the 10,000 samples is
of size 30, the standard deviation of the distribution of the sample-mean estimator is
J(l/12)/30 = 0.0527.

4.3.1 Stata program

A mechanism for repeating the same statistical procedure 10,000 times is to write a
program (see appendix A.2 for more details) that does the procedure once and use the
simulate command to run the program 10,000 times.

We name the program onesample and define it to be r-class, meaning that the ulti­
mate result, the sample mean for one sample, is returned in r O . Because we name this
result meanforonesample, it will be returned in r (meanforonesample) . The program
has no inputs, so there is no need for program arguments. The prognun drop:; any
existing data on variable x, sets the sample size to 30, draws :30 uniform variates, and
obtains the sample mean with summarize. The summarize command is it::;elf an r-class
command that store:; the sample mean in r (mean) ; see section l .o.1 . The last line of
the program returns r (mean) as the result meanforonesample.

The program is

• Program to draY 1 sample of size 30 from uniform and return sample mean
program onesample , rclass
1 . drop _all
2 . quietly s e t obs 30
3 . generate x = runiform()
4 . summarize x
5 . return scalar meanforonesample = r(mean)
6 . end

To check the program, we run it once, using the same seed as earlier. We obtain

* Run program onesample once as a check
set seed 10101

onesample
Variable J Obs

return list
scalar s :

r(meanforonesample)

30

Mean

.5459987

S td. Dev. Min Max

.2803788 . 0524637 . 9 983786

. 5459987225631873

The results for one sample are exactly the same as those given earlier.

4.3.3 Central limit theorem simulation

4.3.2 The simulate command

123

The simulate command runs a specified command # times, where the user specifies
#. The basic syntax is

simulate [exp_list] , reps (#) [options] : command

where command is the i1ame of the command, often a user-written progTam, and # is
the number of simulations or replications. The quantities to be calculated and stored
from command are given in exp_list. We provide additional details on simulate in
section 4.6.1 .

After simulate i s run, the Stata dataset currently in memory is replaced by a
dataset that has # observations, with a separate variable for each of the quantities
given in exp_list.

4.3 .3 Central limit theorem simulation

The simulate command can be used to run the onesample program 10,000 times, yield­
ing 10,000 sample means from samples of size 30 of uniform variates. We additionally
used options that set the seed and suppress the output of a dot for each of the 10,000
simulations. We have

• Run program onesample 10 , 000 times to get 1 0 , 000 sample means
simulate xbar � r (meanforonesample) , seed(10101) reps(10000) nodots:

> onesample

command : onesample
xbar : r(meanforonesamplo)

The result from each sample, r (meanf oronesample) , is stored as the variable xbar.

The simulate command overwrites any existing data with a dataset of 10,000 "ob­
servations" on x. We summarize these values, expecting them to have a mean of 0.5
and a standard dev�ation of 0.0527. We also present a histogram overlaid by a normal
density curve with a mean and standard deviation, which are those of the 10,000 values
ofx. We have

• Summarize the 10 ,000 sample means and draw histogram
summarize xbar

Variable Obs

xbar 10000

Mean

.4995835

Std. Dev. Min Max

. 0533809 . 3008736 . 6990562

quietly histogram xbar , norma� xtitl e(" xbar from many samples")

(Continued on next page)

124 Cbapter 4 Simulation

xbar from m.:�ny sampler.

Figure 4.3. Histogram of the 10,000 sample means, each from a sample of size 30

The histogram given in figure 4.3 is very close to the bell-shaped curve of the normal.

There are several possible variations on this example. Different distributions for
x can be used with different random-number functions in the generate command for
x. As sample size (set obs) and number of simulations (reps) increases, the results
become closer to a normal distribution.

4.3.4 The postfile command

In this book, we generally use simulate to perform simulations. An alternative method
is to use a looping command, such as forvalues, and within each iteration of the
loop use post to write (or post) key results to a file that is declared in the postfile
command. After the loop ends, we then analyze the data in the posted fi le.

The postfile command has the following basic synta.x:

pos tfile postname newvarlist using filename [, every (#) replace]

where postname is an internal filename, newvarlist contains the names of the variables
to be put in the dataset, and filename is the external filename.

The post postname (exp1) (exp2) . . . command is used to write expl , exp2 , . . . to
the file. Each expression needs to be enclosed in parentheses.

The postclose postname command ends the posting of observations.

The postfile command offers more flexibility than simulate and, unlike simulate,
does not lead to the dataset in memory being overwritten. For the examples in this
book, simulate is adequate.

·· ·

4.4 Pseudorandom-number generators: Further details

4.3.5 Alternative central limit theorem simulation

We illustrate the use of postfile for the central limit theorem example. We have

• Simulation using postfile
set seed 10101

postfile sim_mem xmean using simresults , replace
forvalues i = 1/10000 {
2 . drop _all
3 . quietly set obs 30
4 .
5 .
6 .
7 .
8 . }

tempvar x
generate · x · = runiform()
quietly summarize · x ·
post sim_mem (r(mean))

postclose sim_�em

125

The postfi1e command declares the memory object in which the results are stored,
the names of variables in the results dataset, and the name of the results dataset file.
In this example, the memory object is named sim_mem, X1!lean will be the only variable
in the results dataset file, and simresul ts .d ta will be the results dataset file. (The
replace option causes any existing simresul ts .d ta to be replaced.) The forvalues
loop (see section 1 .8) i:; u:;ed to perform 10 ,000 repetition:;. At each repetition, the
sample mean, result r (mean) , is posted and will be included as an observation in the
new xmean variable in simresult s . dta.

To see the results, we need to open simresul ts . d ta and summarize.

• See the results stored in simresults
Use simresul t s , clear
summarize

Variable Dbs Mean

xmean 10000 .4995835

Std. Dev. Min Max

. 0533809 . 3008736 . 6990562

The results are ide�1tical to those in section 4.3.3 with simulate due to using the same
seed and same sequence of evaluation of random-number fLmctions.

The simulate command suppresses all output within the simulations. This is not
the case for the forvalues loop, so the quietly prefix was used in two place� in the code
above. It can be more convenient to instead apply the quietly prefix to all commands
in the entire forvalues loop.

4.4 Pseudorandom-number generators: Further details

In this section, we present further details on ra.I,ldom-number generation that explain
the methods used in section 4.2 and are useful for making draws from additional distri­
butions.

126 Chapter 4 Simulation

Commonly used methods for generating pseudorandom samples include inverse­
probability transforms, direct transformations, accept-reject methods, illL-..:ing and com­
pounding, and Markov chains. In what follows, we emphasize application and refer the
interested reader to Cameron and Trivedi (2005, ch. 12) or numerous other texts for
additional details.

4.4.1 Inverse-probability transformation

Let F(x) = Pr(X ::::; x) denote the cumulative distribution function of a random variable
x. Given a draw of a uniform variate r, 0 ::::; r ::::; 1 , the inverse transformation x =

p- I (r) gives a unique value of x because F (x) is nondecreasing in x. If r approximates
well a random draw from the uniform, then x = p - l (r) will approximate well a random
draw from F(x).

A leading application is to the standard normal distribution. Then the inverse of
the cumulative distribution function (c.d.f.) ,

F (x) = <P(x) = jx �e-=212dz
-00 y 27i

has no closed-form solution, and there is consequently no analytical expression for
<p-1 (x) . Nonetheless, the inverse-transformation method is easy to implement be­
cause numerical analysis provi(k;s fnnctions that calr.nlate a very gooci approximation
to <P- 1 (x). In Stata, the function is invnonnal () . Combining the two steps of drawing
a random uniform variate and evaluating the inverse c.d.f., we have

• Inverse probability transformation example : standard normal
quietly set obs 2000
set seed 10101

generate xstn = invnormal(runiform())

This method was presented i n section 4.2 .2 but is now superseded by the rno:nnal 0
function.

As another application, consider drawing from the unit exponential, with c.d.f.
F(x) = 1 - e -"'. Solving r = 1 - e-x yields x = - ln(l - r) . If the uniform draw
is, say, 0.640, then x = - ln(l - 0.640) = 1.022. With continuous monotonically in­
creasing c.d.f., the inverse transformation yields a unique value of x, given r. The Stata
code for generating a draw from the unit exponential illustrates the method:

. • Inverse probability transformation example: unit exponential

. generate xue = -ln(1-runiform())

For discrete random variables, the c.d.f. is a step function. Then the inverse is not
unique, but it can be uniquely determined by a convention for choosing a value on the
fiat portion of the c.d.f., e.g., the left limit of the segment.

In the simplest case, we consider a Bernoulli random variable taking a value of 1
with a probability of p and a value of 0 with a probability of 1 - p. Then we take a

. r-I

4.4.3 Other methods 127

uniform draw, u, and set y = 1 i f u ::; p and y = 0 i f u > p. Thus, if p = 0.6, we obtain
the following:

• Inverse probability transformation example: Bernoulli (p � 0 . 6)
generate xbernoulli � runiforinO > 0 . 6 I I Bernoull'i (0 . 6)
summarize xstn xue xbernoulli

Variable Dbs Mean Std. Dev. Min Max

xstn 2000 . 0481581 1 . 001728 - 3 . 445941 3 . 350993
xue 2000 .9829519 1 . 000921 . 0003338 9 . 096659

xbernoulli 2000 . 4055 .4911113 0

This code uses a logical operator that sets y = 1 if the condition is met and y = 0
otherwise; s�e section 2.4. 7.

A more complicated discrete example is the Poisson distribution because then the
random variable can potentially take an infinite number of values. The method is to
sequentially calculate the c.d.f. Pr(Y ::; k) for k = 0, 1 , 2, Then stop when the first
Pr(Y ::; k) > u, where u is the uniform draw, and set y = k. For example, consider the
Poisson with a mean of 2 and a uniform draw of 0.701. We first calculate Pr(y ::; 0) =
0.135 < u, then calculate Pr(y ::; 1) = 0.406 < ·u, then calculate Pr(y ::; 2) = 0.677 < u,
and finally calculate Pr(y ::; :3) = 0.857. This last calculation exceeds the uniform
draw of 0. 701, so stop and set y = 3. Pr(Y ::; k) is computed by using the recursion
Pr(Y ::; k) = Pr(Y ::; k - 1) + Pr(Y = k).

4.4.2 Direct transformation

Suppose we want to make draws from the random variable Y, and from probability
theory, it is known that Y"is a transformation of the random variable X, say, Y = g(X) .

In this situation, the direct transformation method obtains draws of Y by drawing X and then applying the transformation g(·) . The method is clearly attractive when it
is easy to draw X �d evaluate g(·) .

Direct transformation is particularly easy to illustrate for well-known transform::;
of a standard normally distributed random variable. A x2(1) draw can be obtained
as the square of a draw from the standard normal; a x2(m) draw is the sum of m
independent draws from x2(1) ; an F(ml , m2) draw is (vJ/mi) / (v2/m2), where Vi and
v2 are independent draws from x2(mt) and x2(m2); and a t(m) draw is u/ � where
u and v are independent draws from N(O, 1) and x2(m).

4.4.3 Other methods

In some cases, a distribution can be obtained as �" mi."<ture of distributions. A leading
example is the negative binomial, which can be obtained as a Poisson-gamma mixture
(see section 4.2.4) . Specifically, if y l .\ is Poisson(�) and .>.lp, ex is gamma with a mean
of p, and a variance of cxp, then YifL, ex is a negative binomial distributed with a mean

128 Chapter 4 Simulation

of JL and a variance of f.L + a.!J-2 . This implies that we can draw from the negative
binomial by using a two-step method in which we first draw (say, v) from the gamma
distribution with a mean equal to 1 and then, conditional on v, draw from Poisson(�J-v).
This example, using mixing, is used again in chapter 17.

More-advanced methods include accept�reject algorithm:; and importance sampling.
Many of Stata's pseudorandom-number generators use accept�reject a.lgorithms. Type
help random number functions for more information on the methods u:;ecl by Stata.

4.4.4 Draws from truncated normal

In ::;imulation-based estimation for latent normal modeb with censoring or :;election, it
i::; often nece::;::;ary to generate draw:; from a truncated normal distribution. The inver::;e­
probability transformation can be extended to obtain draw:; in this case.

Consider making draw:; from a truncated normal. Then X ""' T N(<J,u) (JL, a2) , where
without tnmcation X "' N(JL. a2) . With truncation, realizations of X are restricted to
lie between left truncation point a and right truncation poir:t b.

For simplicity, fi.r:>t con::;ider the standard normal case (JL = 0, cr = 1) and let
Z "' N(O, 1) . Given the draw ·u from the uniform distribution, :r i::; defined by the
::;olution of the inverse-probability transformation equation

Pr(a s; Z s; x) iD(x) - <.!?(a)
· u = F(x) =

Pr(a s; Z s; b)
=

<.!?(b) - <.I?(a)

Rearranging, <.!?(x) = <.!?(a) + {<.!?(b) - <.!?(a)}u so that ::;olving for x we obtain

:z· = iD�1 [<.T?(a) + {<.!?(b) - <.!?(a) } u]

To extend this to the general case, note that if Z ""' N(,.. , a2) then Z* = (Z - IJ-)/a ""'
N(O, 1) , and the truncation points for z• . rather than Z, are a• = (a - IJ-)/o· and
b' = (b - f.L)/cr. Then

x = f.L + O"iD� 1 [<.l?(a*) + {<.l?(b*) - <.I?(a*) } u]

As an example, we consider draws from N(5, 42) for a random variable truncated to
the range [0, 12] .

• DraYs from truncated normal x - N(mu, sigma-2) i n [a,b]
quietly set obs 2000
set seed 10101

scalar a � 0
scalar b � 12
scalar mu � 5

scalar sigma = 4
generate u = runiformO

II loYer truncation point
II upper truncation point

II mean

II standard deviation

4.4.5 Draws from multivariate normal

generate �=normal ((a-mu) lsigma)+u• (normal((b-mu)lsigma)-normal ((a-mu)lsigma))

generate xtrunc = mu + sigma•invnormal (�)

summarize xtrunc
Variable Obs

xtrunc 1 2000

Mean Std. Dev.

5 . 605522 2 . 944887

Min Max

. 005319 1 1 . 98411

129

Here there is more truncation from below, because a is 1.2.So- from f.L whereas b is
1.75<7 from �,, SQ we expect the truncated mean to exceed the untruncated mean. Accord­
ingly, the sample mean is 5.606 compared with the untruncated mean of 5. Tnmcation
reduces the range and, for most but not all distributions, will reduce the variability.
The sample standard deviation of 2 .945 is less than the untruncated standard deviation
of 4.

An altern ative way to draw X � TN(a,b) (�,, o-
2) is to keep drawing from untruncated

N(p., o-2) until the realization lies in (a, b) . This method will be very inefficient if, for
example, (a, b) = (-0.01 , 0 .01) . A Poisson example is given in section 17.3.5.

4.4.5 Draws from multivariate normal

Making draws from multivariate distributions is generally more complicated. The
method depends on be specifi c case under consideration, and inverse-transformation
methods and transformation methods that work in the univariate cose may no longer
apply.

However, making draws from the multivariate normal is relatively straightforward
because, unlike most other distributions, linear combinations of normals are also normal.

Direct draws from multivariate normal

The drawnorm command generates draws from N(p,, �) for the user-specifi ed vector
p, and matrix �. For example, c0nsider making 200 draws from a standard bivariate
normal distribution·with means of 10 and 20, variances of 4 and 9, and a correlation of
0 . . 5 (so the covariance is 3) .

• Bivariate normal example:
* means 10 , 20; variances 4, 9; and correlation 0 . 5
clear
quietly set obs 1000
set seed 10101
matrix MU � (10 , 20)
scalar sig12 = 0 . 5•sqrt (4•9)

II MU is 2 x 1

matrix SIGMA = (4 , sig12 \ s ig12, 9) II SIGMA is 2 x 2

dra�norm y1 y 2 , means(MU) cov(SIGMA)

130 Chapter 4 Simulation

summarize y1 y2
Variable Dbs Mean Std. Dev. Min Max

y1 1000 1 0 . 08618 2 . 082605 3 . 108118 1 6 . 49892
y2 1000 20 .20292 2 . 999583 10 . 12452 29. 79675

correlate yl y2
(obs=1000)

y 1 y2

y1 1 . 0000
y2 0 . 5553 1 . 0000

The sample means are close to 10 and 20, and the standard deviations are close to
J4 = 2 and /9 = 3. The sample correlation of 0.5553 differs somewhat from 0.50,
though this difference disappears for much larger sample sizes.

Transformation using Cholesky decomposition

The method uses the result that if z ""' N(O, I) then x = J-L + Lz ""' N(p,, LL') . It is easy
to draw z c' N(O, I) because z is just a column vector of univariate normal draws. The
transformation method to make draws of x "' N(p,, 2::) evaluates x = J-L + Lz, where
the matrix L satisfies LL' = 2::. More than one matrix L satisfies LL' = 2::, the matri..'<
analog of the square root of 2::. Standard practice is to use the Cholesky decomposition
that restricts L to be a lower triangular matrix. Specifically, for the trivariate normal
distribution, let E(zz') = 2:: = Lzz'L', where z "' N (O ,I3) d.nd

L = [��� l�2 �]
131 132 133

Then the following transformations of z' = (z1 z2 z3) yield the desired multivariate
normal vector x ""' N(p,, 2::) :

x1 = IJ.J + luz1
X2 = /.l2 + I21 Z1 + b2z2
X3 = /t3 + I31Z1 + h2z2 + l33Z3

4 .4 .6 Draws using Markov chain Monte Carlo method

In some cases, making direct draws from a target joint (multivariate) distribution is
difficult , so the objective must be achieved in a different way. However, if it is also
possible to make draws from the distribution of a subset, conditional on the rest, then
one can create a Markov chain of draws. If one recursively makes draws from the con­
ditional distribution and if a sufficiently long chain is constructed, then the distribution
of the draws will, under some conditions, converge to the distribution of independent
draws from the stationary joint distribution. This so-called Markov chain Monte Carlo
method is now standard in modern Bayesian inference.

4.4.6 Draws usjng Markov cbain Monte Carlo metbod 131

To be concrete, let Y = (Y1 , Y2) have a bivariate density of f(Y) = f(Y1, Y2) , and
suppose the two conditional densities f(Y1 JY2) and f(Y2 I Y1) are known and that it is
possible to make draws from these. Then it can be shown that alternating sequential
draws from j(Y1 I Y2) and j(Y2 IY1) converge in the limit to draws from f(Y1 , Y2), even
though in general f(Y1, Y2) f. f(Y1 J Y2)j(Y2 JY1) (recall that f(Y1 , Y2) = J(Y1 I Y2)J(Y2)) .
The repeated recursive sampling from f(Yt l Y2) and f(Y2 JY1) is called the Gibbs sampler.

We illustrate the Markov · chain lVIonte Carlo approach by making draws from a
bivariate normal distribution, f(Y1 , Y2) . Of course, using the drawnorm command, it is
quite straightforward to draw samples from the bivariate normal. So the application
presented is illustrative rather than practical. The relative simplicity of this method
comes from the fact that the conditional distributions f(Y1 J Y2) and f(Y2 JY1) derived
from a bivariate normal are also normal.

vYe draw bivariate normal data with means of 0, variances of 1 , and a correlation of
p = 0.9. Then Yi iY2 � N {0, (1 - p2) } and Y2IY1 � N {0 , (1 - p2) } . Implementation
requires looping that is much easier using matrix programming language commands.
The following Mata code implements this algorithm by using commands explained in
appendix B.2.

• MCMC example: Gibbs for bivariate normal mu's=O v's=1 corr=rho=0 .9
set seed 10101
clear all
set obs 1000

obs Yas 0 , noY 1000
. generate double y1 = .

(1000 missing values generated)

. generate double y2 = .
(1000 missing values generated)

mat a :
-------------------- mata (type end to exit) -­

sO = 10000

s1 = 1000
y1 = J(sO+s1 , 1 , 0)
y2 = J (sO+s1 , 1 , 0)

II Burn-in for the Gibbs sampler (to be discarded)

II Actual draYs used from the Gibbs sampler

II Initialize y1
II Initialize y2

rho = 0. 90 II Correlation parameter
for(i=2; i<=sO+ s 1 ; i++) {

> y 1 [i , 1] ((1 -rho-2) -o . 5) • (rnormal(1 , 1 , 0 , 1)) + rho•y2 [i-1 , 1]
> y 2 [i , 1] = ((1 -rho-2) -0 . 5) • (rnormal(1 , 1 , 0 , 1)) + rho•y1 [i ,1]
> }

y = y 1 , y2
y = y [l (s0+1) , 1 \ (sO+s 1) , . I] I I Drop the burn-ins
mean (y) II Means of y 1 , y2

2

1 1 . 0831308345 . 0647158328

132

variance (y)
[symmetric]

1 . 104291499
1 . 005053494

2

1 . 1087737 41 ; I �------------------�

correlation(y)
[symmetric]

2

21 l--------�----------� . . 9082927488

end

Chapter 4 Simulation

II Variance matrix of y 1 , y2

II Correlation matrix of y 1 , y2

Many draws may be needed before the chain converges. Here we assume that 11,000
draws are sufficient, and we discard the first 10,000 draws; the remaining 1,000 draws
are kept. In a real application, one should run careful checks to ensure that the chain
has indeed converged to the desired bivariate normal. For the example here, the sample
means of Y1 and Y2 are 0.08 and 0.06, differing quite a bit from 0. Similarly, the sample
variances of 1.10 and 1 . 11 differ from 1 and the sample covariance of 1.01 differs from
0 .9, while the implied correlation is 0.91 as desired. A longer Markov chain or longer
burn-in may be needed to generate numbers with desired properties for this example
with relatively high p.

Even given convergence of the Markov chain, the sequential draws of any random
variable will be correlated. The output below shows that for the example here, the
first-order correlation of sequential draws of Y2 is 0.823.

mat a:
-------------------- mata (type end to exit) ----

y2 = y [1 2 ' 2 ' s 1 ' 2 1]

y2lag1 = y [l 1 , 2 \ (s1-1) , 2 1]
y2andlag1 = y 2 , y2lag1
correlation(y2andlag1 , 1)

[symmetric]
2

� I �----------�
.822692407

end

4.5 Computing integrals

I I Correlation bet1.1een y 2 and y 2 lag 1

Some estimation problems may involve definite or indefinite integrals. In such cases,
the integral may be numerically calculated.

4.5.2 Monte Carlo integration 133

4.5.1 Quadrature

For one-dimensional :Utegrals of the form J: f(y)dy, where possibly a = -oa, b = oa, or
both, Gaussian quadrature is the standard method. This approximates the integral by
a weighted sum of m terms, where a larger m gives a better approximation and often
even m = 20 can give a good approximation. The formulas for the weights are quite
complicated but are given in standard numerical analysis books.

One-dimensional integrals often appear in regression models with a random intercept
or random effect. In many nonlinear models, this random effect does not integrate
out analytically. Most often, the random effect is normal so that integration is over
(-oa, oa) and Gauss-Hermite quadrature is used. A leading example is the random­
effects estimator for nonlinear panel models fitted using various xt commands. For
Stata code,. see, for example, the user-written command rfprobi t . do for a random·
effects probit package or fi le glla=. ado for generalized linear ad_ditive models.

4.5.2 Monte Carlo integration

Suppose the integral is of the form

E {h(Y)} = 1b h(y)g(y)dy

where g(y) is a density function. This can be estimated by the direct Monte Carlo
integral estimate

where y1 , . . . , y5 are S independent pseudorandom numbers from the density g(y), ob­
tained by using methods. described earlier. This method works if E {h(Y)} exists and
S -+ oa.

This method can be applied to both defi11ite and indefinite integrals. It has the added
advantage of being immediately applicable to multidimensional integrals, provided we
can draw from the-appropriate multivariate distribution. It has the disadvantage that
it will always provide an estimate, even if the integral does not exist. For example, to
obtain E(Y) for the Cauchy distribution, we could average S draws from the Cauchy.
But this would be wrong because the mean of the Cauchy does not exist.

As an example, we consider the computation of E[eJ-.:p{- exp (Y) }] when y � N (0, 1) .
This is the integral:

E [exp {- exp(Y)}] = � exp {- exp(y) } exp (-y-/2) dy
!00 1 .,

-oo v 27r ·

It has no closed-form solution but can be proved to exist. We use the estimate
�

·

1 '""'s E [exp {- exp(Y) }] = S L...-,71 exp {- exp(y") }

where y" is the sth draw of S draws from the N(O, 1) distribution.

134 Cbapter 4 Simulation

This approximation task can be accomplished for a specified value of S, say, 100, by
using the following code.

• Integral evaluation by Monte Carlo simulation Yith S=100
clear all
quietly set obs 100
set seed 10101

generate double y � invnormal (runiform ())
generate double gy � exp(-exp (y))

quietly summarize g y , meanonly
scalar Egy � r (mean)
display "After 100 draYs the MC estimate of E [exp (-exp (x))] is " Egy

After 100 draYs the MC estimate of E[exp(-exp(x))) is .3524417

The Monte Carlo estimate of the integral is 0.352, based on 100 draws.

4.5.3 Monte Carlo integration using different S

It is not known in advance what value of S will yield a good Monte Carlo approximation
to the integral. We can compare the outcome for several different values of S (including
S = 100), stopping when the estimates stabilize.

To investigate this, we replace the preceding code by a Stata program that has as
an arg1.1ment S, the number of simulations. The program can then be called and run
several times with different values of S.

The program is named mcin tegra tion. The number of simulations is passed to the
program as a named positional argument, numsims. This variable is a local variable
within the program that needs to be referenced using quotes. The call to the program
needs to include a value for numsims. Appendix A.2 provides the details on writing a
Stata prog-ram. The program is r-class and returns results for a single scalar, E{g (y)} ,
where g (y) = exp { - exp (y)} .

• Program mcintegration to compute Eg(y) numsims times
program mcintegration, rclass
1 . version : 0 . 1
2 . args numsims // Call to program Yill include value for numsims
3 . drop _all
4 . quietly set obs "numsims
5 . set seed 10101
6 . generate double y � rnormal(O)
7 . generate double gy � exp(-exp (y))
8 . quietly summarize gy , meanonly
9 . scalar Egy � r(mean)

10. display "#simulations: " /.9.0g "numsims · ///
> " MC estimate of E [exp(-exp(x))) is " Egy

1 1 . end

The prog-ram is then run several times, for S = 10, 100, 1000, 10000, and 100000.

4.6.1 Simulation example: OLS witb x2 errors

. * Run program mc integration S � 1 0 , 100, , 100000 times
. mcintegration 10
#simulations : 10 MC estimate of E [exp-exp (x)] is . 30979214

mcintegration 100
#simulations : 100 MC estjma te of E [exp-exp Co:ll is .3714466
. mcintegration 1000
#simulations : 1000 MC estimate of E[exp-exp (x)] is . 38146534

mcintegration 10000
#simulations : 10000 MC estimate of E [exp-exp (x)] is . 38081373

mcint·egration 100000
#simulations : 100000 MC estimate of E [exp-exp (x)] is . 38231031

13.5

The estimates of E{g(y)} stabilize a� S -> oo, but even with S = 105 , the estimate
changes in the third decimal place.

4.6 Simulation for regression: Introduction

The simplest use of simulation methods is to generate a single dataset and estimate the
DGP parameter 8. Under some assumptions, if the estimated parameter 0 differs from
(} for a large sample size, the estimator is probably inconsistent. We defer an example
of this simpler simu;ation to section 4.6.4.

1-'Iore often, (} is estimated from each of S generated datasets, and the e�timates
are t:>loretl and ::;ummarized to learn about the distribution of 0 for a given DGP. For
example, this approach is necessary if one wants to check the validity of a standard
error estimator or the finite-sample size of a test. This approach requires the ability to
perform the same analysis S times and to store the results from each simulation. The
simplest approach is to write a Stata program for the analysis of one simulation and
then use simulate to run this program many times.

4.6.1 Simulation example: OLS with x2 errors

In this section, we use simulation methods to investigate the finite-sample properties
of the OLS estimator with random regressors and skewed errors. If the errors are i . i .d. ,
the fact that they are skewed has no effect on the large-sample properties of the OLS
estimator. However, when the errors are skewed, we will need a larger sample size for the
asymptotic distribution to better approximate the finite-sample distribution of the OLS
estimator than when the errors are normal. This example also highlights an important
modeling decision: when y is skewed, we sometimes choose to model E(lny [x) instead of
E(y[x) because we believe the disturbances enter multiplicatively instead of additively.
This choice is driven by the multiplicative way the error affects the outcome and is
independent of the functional form of its distribution. As illustrated in this simulation,
the asymptotic theory for the OLS estimator works well when the errors are i.i.d. from
a skewed distribution.

136 Cbapter 4 Simulation

We consider the following DGP:

where {31 = 1, {32 = 2, and the sample size N = 150. For this DGP, the error u is
independent of the regressor x (ensuring consistency of OLS) and has a mean of 0,
variance of 2, skewness of JS, and kurtosis of 15. By contrast, a normal error has a
skewness of 0 and a kurtosis of 3.

We wish to perform 1,000 simulations, where in each simulation we obtain parameter
estimates, standard errors, t-values for the t test of H0 : {32 = 2, and the outcome of a
two-sided test of H0 at level 0.05.

Two of the most frequently changed parameters in a simulation study are the sample
size and the number of simulations. For this reason, these two parameters are almost
always stored in something that can easily be changed. We use global macros. In the
output below, we store the number of observations in the global macro numobs and the
number of repetitions in the global macro numsims. We use these global macros in the
examples in this section.

• defining global macros for sample size and number of simulations
global numobs 150 II sample size N
global numsims "1000" II number of simulations

We first write the chi2da ta program, which generates data on y, performs OLS, and
returns lJ2 , s13� , t2 = (/h - 2)/ s13, , a rejection indicator 7"2 = 1 if lt2 l > to.o2s (148) , and
the p-value for the two-sided t test. The chi2da ta program is an r-class program, so
these results are returned in r () using the return command.

• Program for finite-sample properties of OLS
program chi2data , rclass
1 . version 1 0 . 1
2 . drop _all
3 . set obs $numobs
4 .
5 .
6 .
7 .
8 .
9 .

10 .
1 1 .
1 2 . end

generate double x = rchi2(1)
generate y = 1 + 2•x + rchi2 (1) - 1 I I demeaned chi-2 error
regress y x
return scalar b2 =_b [x]
return scalar sc2 = _se [x]
return scalar t2 = (_b[x]-2)l_se [x]
return scalar r2 = abs(return(t2))> invttail($numobs-2 , . 025)
return scalar p2 = 2•ttail ($numobs-2 ,abs (rcturn(t 2)))

Instead o f computing the t statistic and p-value by hand, we could have used test,
which would have computed an F statistic with the same p-value. We perform the
computations manually for pedagogical purposes. The following output illustrates that
test and the manual calculations yield the same p-value.

set seed 10101

quietly chi2data

4.6.1 Simulation example: OLS witb x2 errors

. return list
scalars:

r(p2)
r (r2)
r(t2)

r(se2)
r (b2)

. quietly test x=2

. return .list
scalars:

r(drop)
r(df_r)

r (F)
r (df)

r(p)

. 0419507319188174
1 .
2 . 0 51809742705663
.0774765767688598
2 . 15896719504583

0
148
4 . 2 09923220261881

.0419507319188174

137

Below we use simulate to call chi2da ta $numsims times anci to store the results;
here $numsims = 1000. The current dataset is replaced by one with the results from
each simulation. These results can be displayed by using summarize, where obs in the
output refers to the number of simulations and not the sample size in each simulation.
The summarize outpc.t indicates that 1) the mean of the point estimates is very close
to the true value of 2, 2) the standard deviation of the point estimates is close to the
mean of the standard errors, and 3) the rejection rate of 0.046 is very close to the size
of 0.05 .

. • Simulation for finite-sample properties of OLS

. simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) reject2f=r(r2) p2f=r(p2) ,
> reps($numsims) saving(chi2datares, replace) nolegend nodots: chi2data

summarize b2f se2f rej ect2f
Variable _ Obs Mean Std. Dev. Min Max

b2f
se2f

reject2f

.1000
1000
1000

2 . 000502
.0839736

. 046

. 0842622 1 . 719513

.0 172607 . 0415919

.2095899 0

2 . 40565
. 145264

Below we use mean to obtain 95% confidence intervals for the simulation averages.
The results for b2f and the rejection rate indicate that there is no significant bias and
that the asymptotic distribution approximated the finite-sample distribution well for
this DGP with samples of size 150. The confi.dence interval for the standard errors
includes the sample standard deviation for b2f , which is another indication that the
large-sample theory provides a good approximation to the finite-sample distribution.

. mean b2f se2f reject2f
Mean estimation Number of obs 1000

b2f
se2f

reject2f

Mean Std. Err.

2 . 000502 . 0026646
. 0839736 . 0005458

. 04 6 .00 66278

[95/. Conf . Interval)

1 . 995273
. 08;29025

. 032994

2. 005731
. 0850448

.059006

138 Cbapter 4 Simulation

Further information on the distribution of the results can be obtained by using the
summarize, detail and kdensi ty commands.

4.6.2 Interpreting simulation output

We consider in turn unbiasedness of {32 , correctness of the standard-error formula for
sPz , distribution of the t statistic, and test size.

Unbiasedness of estimator

The average of 132 over the 1,000 estimates, 132 = (1/1000) I::�2 13" is the simulation
estimate of E(132). Here 132 = 2 .001 (see the mean of b2f) is very close to the DGP
value {32 = 2.0, suggesting that the estimator is unbiased. However, this comparison
should account for simulation error. F'rom the mean command, the simulation yields a
95% confidence interval for E(132) of [1.995, 2.006]. This interval is quite narrow and
includes 2.0 , so we conclude that E(132) is unbiased.

Many estimators, particularly nonlinear estimators, are biased in finite samples.
Then exercises such as this can be used to estimate the magnitude of the bias in typical
sample sizes. If the estimator is consistent, then any bias should disappear as the sample
size N goes to infinity.

Standard errors

The variance of 1J2 over the 1,000 estimates, s: (1/999) I;��1° (13. - /h)2 , is the liz
simulation estimate of D"�- = Var(132) , the variance of 132 . Similarly, s _ = 0.084 (see the

� �

standard deviation of b2f) is the simulation estimate of apz · Here se(132) = 0.084 (see
the mean of se2f) and the 95% confidence interval for se(132) is [0.083, 0.085]. Since this
interval includes s . = 0.084, there is no evidence that se({h) is biased for O";,_ , which

� �
means that the asymptotic distribution is approximating the finite-sample distribution
well.

In general, that {se(132) fl is unbiased for D"�z does not imply that upon taking the
square root se(132) is unbiased for D"iJo .

t statistic

Because we impose looser restrictions on the DGP, t statistics are not exactly t dis­
tributed and z statistics are not exactly z distributed. However, the extent to which
they diverge from the reference distribution disappears as the sample size increases.
The output below generates the graph in figure 4.4, which compares the density of the
t statistics with the t(148) distribution.

4.6.2 Interpreting simulation output

kdensity t2f , n(1 000) gen(t2_x t2_d) nograph
generate double t2_d2 = tden (148, t2_x)

graph tYoYaY (line t2_d t2_x) (line t2_d2 t2_x)

": ·

"! ·

a 2 r(l2)
1 -- donsly: r(l2) -- 12_o2 1

4

Figure 4.4. t statistic density against asymptotic distribution

139

Although the graph highlights some differences between the finite-sample and the asymp­
totic distributions, the divergence between the two does not appear to be great. Rather
than focus on the distribution of the t statistics, we instead focus on the size of tests or
coverage of confidence intervals based on these statistics.

Test size

The size of the test is the probability of rejecting H 0 when H 0 is true. Because the
DGP sets (32 = 2, we consider a two-sided test of H o: (32 = 2 against Ha : (32 =I 2. The
level or nominal size of the test is set to 0.05, and the t test is used. The proportion
of simulations that lead to a rej�ction of H 0 is known as the rejection rate, and this
proportion is the sirriulation estimate of the true test size. Here the estimated rejection
rate is 0.046 (see the mean of reject2f) . The associated 95% confidence interval (from
mean reject2f) is [0.033, 0.059] , which is quite wide but includes 0.05. The width
of this confidence interval is partially a result of having run only 1,000 repetitions,
and partially an indication that, with 150 observations, the true size of the test can
differ from the nominal size. When this simulation is rerun with 10,000 repetitions, the
estimated rejection rate is 0.049 and the confidence interval is [0.044, 0.052].

The simulation results also include the variable p2f, which stores the p-values of
each test. If the t(148) distribution is the correct distribution for the t test, then p2f
should be uniformly distributed on (0 , 1) . A histogram, not shown, reveals this to be
the case.

140 Chapter 4 Simulation

More simulations are needed to accurately measure test size (and power) than are
needed for bias and standard-error calculations. For a test with estimated size a based on
S simulations, a 95% confidence interval for the true size is a ± 1 .96 x J a(l - a)/ S. For
example, if a = 0.06 and S = 10,000 then the 95% confidence interval is [0.055, 0.065] .
A more detailed Monte Carlo experiment for test size and power is given in section 12.6.

Number of simulations

Ideally, 10,000 simulations or more would be run in reported results, but this can be
computationally expensive. vVith only 1,000 simulations, there can be considerable
simulation noise, especially for estimates of test size (and power) .

4.6.3 Variations

The preceding code is easily adapted to other problems of interest.

Different sample size and number of simulations

Sample size can be changed by changing the global macro numobs. Many simulation
studies focus on finite-sample deviations from asymptotic theory. For some estimators,
most notably IV with weak instruments, such deviations can occur even with samples
of many thousands of observations.

Changing the global macro numsims can increase the number of simulations to yield
more-precise simulation results.

Test power

The power of a test is the probability that it rejects a false null hypothesis. To simulate
the power of a test, we estimate the rejection rate for a test against a false null hypoth­
esis. The larger the difference between the tested value and the true value, the greater
the power and the rejection rate. The example below modifies chi2data to estimate
the power of a test against the false null hypothesis that (32 = 2 . 1 .

• Program f o r finite-sample properties o f OLS:
program chi2datab , rclass
1 . version 10 . 1
2 . drop _all
3 . set obs $numobs
4 . generate double x = rchi 2(1)

fixed regressors

5. generate y = 1 + 2•x + rchi2(1)-1 II demeaned chi -2 error
6 .
7 .
8 .
9 .

10 .
1 1 . end

regress y x
return scalar b2 =_b[x]
return scalar se2 =_se [x]
test x�2 . 1
return scalar r2 = (r (p)< .05)

4.6.4 Estimator inconsistency 141

Below we use simulate to run the simulation 1 , 0 00 times, and then we summarize the
results.

• PoYer simulation for finite-sample properties of OLS
simulate b2f=r(b2) se2f=r(se2) reject2f=r (r2) , reps.(Snumsims)

> saving(chi2databres , replace) nolegend nodots : chi2datab

. mean b2f se2f reject2f
Mean estimation Number of obs 1000

Mean Std . Err. [95/. Conf. Interval]

b2f 2 . 001816 . 0026958 1 . 996526 2 . 007106
se2f . 0836454 . 0005591 . 0825483 . 0847426

reject2f .241 . 0135315 . 2 144465 . 2675535

The sample mean of reject2f provides an estimate of the power. The estimated power
is 0.241, which is not high. Increasing the sample size or the distance between the tested
value and the true value will increase the power of the test.

A useful way to incorporate power estimation is to define the hypothesized value of
{32 to be an argumer:t of the progTam chi2datab. This is demonstrated in the more
detailed l\Ionte Carlo experiment in section 12.6 .

Different error distributions

We can investigate the effect of using other error distributions by changing the dis­
tribution used in chi2da ta. For linear regression, the t statistic becomes closer to t
distributed as the error distribution becomes closer to i . i .d. normal. For nonlinear mod­
els, the exact finite-sample distribution of estimator:; and test statistics is unknown even
if the errors are i . i .d. normal.

The example in section 4.6.2 used different draws of both regTessors and errors in
each simulation. This corresponds to simple random sampling where we jointly sample
the pair (y , x) , especially relevant to survey data where individuals are sampled, and
we use data (y ,x) for the sampled individuals. An alternative approach is that of fixed
regTessors in repeated trials, especially relevant to designed experiments. Then we draw
a sample of x only once, and we use the same sample of x in each simulation while
redrawing only the error u (and hence y). In that case, we create fixedx .dta, which
has 150 observations on a variable, x, that is drawn from the x2(1) distribution, and
we replace lines 2-4 of chi2data by typing use fixedx , clear.

4.6.4 Estimator inconsistency

Establishing estimator inconsistency requires less coding because we need to generate
data and obtain estimates only once, with a large N, and then compare the estimates
with the DGP values.

142 Chapter 4 Simulation

We do so for a classical errors-in-variables model of measurement error. Not only is
it known that the OLS estimator is inconsistent, but in this case, the magnitude of the
inconsistency is also known, so we have a benchmark for comparison.

The DGP considered is

y = (Jx* + u; x* � N(0 , 9) ; u "' N(0 , 1)

x = x• + v ; v ,-.., N(O, 1)

OLS regression of y on x* consistently estimates (3. However, only data on x rather
than x• are available, so we instead obtain /3 from an OLS regression of y on x. It
is a well-known result that then 7J is inconsistent, with a downward bias, s(J, where
s = cr.�/(cr; + a·;.) is the noise-signal ratio. For the DGP under consideration, this ratio
is 1 / (1 + 9) = 0 .1 , :;o plim 'iJ = (3 - s(J = 1 - 0. 1 x 1 = 0.9.

The following simulation checks this theoretical prediction, with sample size set to
10, 000. We use drawnorm to jointly draw (x* , u, v), though we could have more simply
made three separate standard normal draws. We set (3 = 1 .

• Inconsistency o f OLS �n errors-in-variables model (measurement error)
clear

quietly set obs 10000
set seed 10101
matrix mu � (0 , 0 , 0)
matrix sigmasq � (9 , 0 ,0\0 , 1 , 0\0 , 0 , 1)
dra�norm xstar u v , means(mu) cov(sigmasq)

generate y � 1•xstar + u // DGP for y depends on xstar
generate x � xstar + v // x is mismeasured xstar

regress y x, noconstant

Source ss df MS

Model 31730 . 3312 81730.3312
Residual 19127.893 9999 1 . 9 129806

Total 100858. 224 10000 10 . 0858224

y I Coef . Std. Err. t P> l t l

X I . 9001733 . 004355 206.70 0 . 000

Number of obs � 10000
F(1 , 9999) �42724 .08
Prob > F 0 . 0000
R-squared 0 . 8103
Adj R-squared � 0 . 8103
Root MSE 1. 3831

[95% Conf. Interval)

.8916366 . 90871

The OLS estimate is very precisely estimated, given the large sample size. The estimate
of 0.9002 clearly differs from the DGP value of 1 .0 , so OLS is inconsistent. Furthermore,
the simulation estimate essentially equals the theoretical value of 0.9.

4.6.5 Simulation with endogenous regressors

Endogeneity is one of the most frequent causes of estimator inconsistency. A simple
method to generate an endogenous regressor is to first generate the error u and then
generate the regressor x to be the sum of a multiple of u and an independent component.

4.6.5 Simulation with endogenous regressors

We adapt the previous DGP as follows:

y = fJ1 + fJ2x + u; U "-' N(0, 1) ;
x = z + 0 .5u; z ,...., N(O, 1)

143

We set fJ1 = 10 and fJ2 = 2. For this DGP, the correlation between x and u equals 0.5 .
We let N = 150.

The following program generates the data:

• Endogenous regre�sor
clear

set seed 10101
program endogreg, rclass
1 . version 1 0 . 1
2 . drop _a:.l
3 . set obs $numobs
4 . generate u = rnorma l(O)

6 .
7 .

5 . generate x = 0 . 5•u + rnorma l(O)
generate y = 10 + 2•x + u
regress y x

8 .
9 .

return scalar b2 =_b [x]
return scalar se2 = _se [x]

II endogenous regressors

10 . return scalar t2 = (_b[x]-2)1_se [x]
1 1 .
12 .
13 . end

return scalar r 2 = abs (return (t2)) >invttail ($numobs-2 , . 025)
return scalar p2 = 2•ttail($numobs-2, abs (return(t2)))

Below we run the simulations and summarize the results .

. simulate b2r=r(b2) se2r=r(se2) t2r=r(t2) reject2r=r(r2) p2r=r (p2) ,
> reps($numsims) nolegend nodots : endogreg

. mean b2r se2r reject2r

Mean estimation Number of obs 1000

Mean Std. Err.

b2r - 2 . 399301
se2r . 0658053

reject2r

.0020709

.0001684
0

[95/. Conf. Interval]

2 . 395237
. 0654747

2 . 403365
. 0661358

The results from these 1,000 repetitions indicate that for N = 150, the OLS estimator
is biased by about 20%, the standard error is about 32 times too small, and we always
reject the true null hypothesis that /32 = 2.

By setting N large, we could also show that the OLS estimator is inconsistent with a
single repetition. As a variation, we could instead estimate by IV, with z an instrument
for x, and verify that the IV estimator is consiste�?-t·

144 Chapter 4 Simulation

4. 7 Stata resources

The key reference for random-number functions is help functions. This covers most of
the generators illustrated in this chapter and several other standard ones that have not
been used. Note, however, that the rnbinomial (k ,p) function for making draws from
the negative binomial distribution has a different parameterization from that used in this
book. The key Stata commands for simulation are [Rj simulate and [P] postfile. The
simulate command requires first collecting commands into a program; see [P] program.

A standard book that presents algorithms for random-number generation is Press et
al. (1992) . Cameron and Trivedi (200,5) discuss random-number generation and present
a Monte Carlo study; see also chapter 12 .7 .

4.8 Exercises

1. Using the normal generator, generate a random draw from a 50-50 scale mixture
of N(l , 1) and N (1 , 32) distributions. Repeat the exercise with the N(l, 32) com­
ponent replaced by N (3 , 1) . For both cases, display the features of the generated
data by using a kernel density plot.

2. Generate 1,000 observations from the F(5, 10) distribution. Use rchi20 to obtain
draws from the x:2(5) and the x:2(10) distributions. Compare the sample moments
with their theoretical count�rparts.

3. Make 1,000 draws from the N(6, 22) distribution by making a transformation of
draws from N(O, 1) and then making the transforma';ion Y = J1. + aZ.

4. Generate 1,000 draws from the t(6) distribution, which has a mean of 0 and a
variance of 4. Compare your results with those from exercise 3.

5 . Generate a large sample from the N(p. = l , a2 = 1) distribution and estimate
a/Jl., the coefficient of variation. Verify that the sample estimate is a consistent
estimate.

6. Generate a draw from a multivariate normal distribution, N(J.L, :E = LL') , with
f.L1 = [0 0 OJ and

� � l , or
:E

= [� � � l V3 v'6 0 3 9

using transformations based on this Cholesky decomposition. Compare your re­
sults with those based on using the drawnorm command.

7. Let s denote the sample estimate of a and x denote the sample estimate of p.. The
coefficient of variation (cv) a//.!, which is the ratio of the standard deviation to
the mean, is a dimensionless measure of dispersion. The asymptotic distribution
of the sample cv sjx is N[ajp,, (N - 2)-112 (a/Jl. f {0 .5 + (a/p,)2}] ; see Miller
(1991) . For N = 25 .. using either simulate or postfile, compare the Monte

4.8 Exercises 145

Carlo and asymptotic variance of the sample cv with the following specification
of the DGP: x "' N(J.L, cr2) with three different values of cv = 0 . 1 , 0.33, and 0.67.

8. It is suspected that making draws from the truncated normal using the method
given in section 4.4.4 may not work well when sampling from the extreme tails of
the normal. Using different truncation points, check this suggestion.

9. Repeat the example of section 4.6.1 (OLS with x2 errors) , now using the postfile
command. Use postfile to save the estimated slope coefficient, standard error,
the t statistic for H0: (3 = 2, and an indicator for whether H 0 is rejected at 0.05
level in a Stata file named simresul ts. The template program is as follows:

• Postfile and post example: repeat OLS Yith chi-squared errors example
clear
set seed 10101
program simbypost

version 10 . 1
tempname simfile
postfile ' simfile" b2 se2 t2 reject2 p2 using simresults, replace
quietly {

forvalues i = 1/$numsims {
drop _all

}
}

set obs $numobs
generate x = rchi2(1)
generate y = 1 + 2•x + rchi2 (1) - 1 // demeaned chi -2 error
regress y x
scalar b2 �_b [x]
sea lar se2 = _se [x]
scalar t2 = (_b [x] -2)/_se [x]
scalar reject2 = abs(t2) > invttail ($numobs-2 , . 025)
scalar p2 = 2•ttail($numobs-2 ,abs(t2))
post 'simfile" (b2) (se2) (t2) (reject2) (p2)

postclose ' simf ile"
end
simbypost
use simresult s , clear
summarize

