
4 S im u lation 

4. 1 Introduction 

Simulation by Monte Carlo experimentation is a useful and powerful methodology for 
investigating the properties of econometric estimators and tests. The power of the 
methodology derives from being able to define and control the statistical environment 
in which the investigator specifies the data-generating process (DGP) and generates data 
used in subsequent experiments. 

Monte Carlo experiments can be used to verify that valid methods of statistical 
inference are being used. An obvious example is checking a new computer program or 
algorithm. Another example is investigating the robustness of an established estimation 
or test procedure to deviations from ::;etting::; where the properties of the procedure are 
known. 

Even when valid methods are used, they often rely on asymptotic results. We may 
want to check whether these provide a good approximation in samples of the size typi­
cally available to the investigators. Also asymptotically equivalent procedures may have 
different properties in fi.nite samples. Monte Carlo experiments enable fi nite-sample 
comparisons. 

This chapter deals with the basic elements common to Monte Carlo experiments: 
computer generation of random numbers that mimic the theoretical properties of real­
izations of random variables; commands for repeated execution of a set of instructions; 
and machinery for saving, stori11g, and processing the simulation output, generated in 
an experiment, to obtain the summary measures that are used to evaluate the proper­
ties of the procedures under study. We provide a series of examples to illustrate various 
aspects of Monte Carlo analyses. 

The chapter appears early in the book. Simulation is a powerful pedagogic tool for 
exposition and illustration of statistical concepts. At the simplest level, we can use 
pseudorandom samples to illustrate distributional features of artificial data. The goal 
of this chapter is to use simulation to study the distributional and moment properties 
of statistics in certain idealized statistical environments. Another possible use of the 
Monte Carlo methodology is to check the correctness of computer code. Many applied 
studies use methods complex enough that it is .  easy to make mistakes. Often these 
mistakes could be detected by an appropriate simulation exercise. We believe that sim­
ulation is greatly underutilized, even though Monte Carlo experimentation is relatively 
straightforward in Stata. 
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4.2 Pseudorandom-number generators: Introduction 
Suppose we want to use simulation to study the properties of the ordinary least-squares 
estimator ( OLS) estimator in the linear regression model with normal errors. Then, 
at the minimum, we need to make draws from a specified normal distribution. The 
literature on (pseudo) random-number generation contains many methods of generating 
such sequences of numbers. When we use packaged functions, we usually do not need to 
know the details of the method. Yet the match between the theoretical and the sample 
properties of the draws does depend upon such details. 

Stata introduced a new suite of fa::;t and easy-to-use random-number functions (gen­
erators) in micl-2008. The::;e functions begin with the letter r (from random) and can be  
readily installed v ia  an update to ver::;ion 10 .  The suite include::; the uniform, normal, 
binomial, gamma, and Poi::>son functions that we will u::;e in thi::; chapter, as well as 
several others that we do not use. The functions for generating pseudorandom numbers 
are summarized in help functions. 

To a large extent, these new functions obviate the previous methods of using one's 
own generators or user-written commands to generate pseudorandom numbers other 
than the uniform. Nonetheless, there can sometimes be a need to make draws from 
distributions that are not included in the suite. For these draws, the uniform distribution 
is often the starting point. The new runif ormO function generates exactly the same 
uniform draws as unifom ( ) , which it replaces. 

4.2 .1  Uniform random-number generation 

The term random-number generation is an oxymoron. It is more accurate to use the 
term pseudorandom numbers. Pseudorandom-number generators use deterministic de­
vices to produce long chains of numbers that mimic the realizations from some target 
distribution. For uniform random numbers, the target distribution is the uniform dis­
tribution from 0 to 1, for which any value between 0 and 1 is equally likely. Given such 
a sequence, methods exist for mapping these into sequences of nonuniform draws from 
desired distributions such as the normal. 

A standard simple generator for uniform draws uses the deterministic rule X J = (kX j-l + c) mod m, j = 1, . . . , J, where the modulus operator a mod b forms the 
remainder when a is divided by b, to produce a sequence of J integers between 0 and 
m. Then Rj = Xj/m is a sequence of J numbers betweer. 0 and 1 .  If computation is 
done using 32-bit integer arithmetic, then m = 231 - 1 and the maximum periodicity is 
231 - 1 � 2 . 1  x 109 ,  but it is easy to select poor values of k, c, and X0 so that the cycle 
repeats much more often than that. 

This g·enerator is implemented using Stata function runif o m ( ) ,  a 32-bit KISS gen­
erator that uses good values of k and c. The initial value for the cycle, X 0, is called 
the seed. The default is to have this set by Stata, based on the computer clock. For 
reproducibility of results, however, it is best to actually set the initial seed by using set 
seed. Then, if the program is rerun at a later time or by a different researcher, the 
same results will be obtained. 



4.2.1 Uniform random-number generation 

To obtain and display one draw from the uniform, type 

• Single draY of a uniform number 
set seed 10101 
scalar u = runiform ( )  
display u 

. 16796649 

115 

This number is  internally stored at much greater precision than the eight displayed 
digits. 

The following code obtains 1,000 d1·aws from the wuform distribution and then 
provides some details on these draws: 

• 100 0 draYs of uniform numbers 
quietly set obs 1000 
set seed 10101 
generate x = runiformO 

list x in 1/5 ,  clean 
X 

1 .  . 1679665 
2. .3197621 
3 .  . 791 1349 
4 .  . 7193382 
5 .  . 5408687 

summarize x 
Variable 1 Obs 

1000 

Mean 

. 5 150332 

Std. Dev. Min Max 

. 2934123 .0002845 . 9993234 

The 1 ,000 draws have a mean of 0 .515 and a standard deviation of 0.293, close to the 
theoretical values of 0.5 and Jl7l2 = 0.289. A histogram, not given, has ten equal­
width bins with heights that range from 0 .8  to 1 .2 ,  close to the theory of equal heights 
of 1.0. 

The draws should be serially uncorrelated, despite a deterministic rule being used 
to generate the draws. To verify this, we create a time-identifier variable, t, equal to 
the observation number (_n), and we use tsset to declare the data to be time series 
with time-identifier t. vVe could then use the corrgram, ac, and pac commands to 
test whether autocorrelations and partial autocorrelations are zero. We more simply 
use pwcorr to produce the fi.rst three autocorrelations, where L2 . x is the x variable 
lagged twice and the star ( 0 .  05) option puts a star on correlations that are statistically 
significantly different from zero at level 0.05. 

• First three autocorrelations for  the uniform draYs 
generate t = _n 
tsset t 

time variable :  t ,  1 to 1000 
delta: 1 unit 
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p1.1corr x L . x  L 2 . x  L 3 . x ,  star ( 0 . 0 5 )  

X L . x  L2 .x  L3 .x  

X 1 .  0000 
L . x  -0.0185 1 . 0000 

L2 .x  - 0 . 0047 -0 .0199 1 .  0000 
L3 .x  0 . 0116  - 0 . 0059 -0 . 0207 1 . 0000 

The autocorrelations are low, and none are statistically different from zero at the 0.05 
level. Uniform random-number generators used by packages s·,tch as Stata are, of course, 
subjected to much more stringent tests than these. 

4 .2 .2  Draws from normal 

For simulations of standard estimators such as OLS ,  nonlinear least squares (NLS), and 
instrumental variables (rv), all that is needed are draws from the uniform and normal 
distributions, because normal errors are a natural starting point and the most common 
choices of distribution for generated regressors are normal and uniform. 

The command for making draws from the standard normal has the following simple 
syntax: 

generate varna me = rnormal ( )  

To make draws from N(m,s2 ) ,  the corresponding command is  

generate varna m e  = rnormal ( m ,  s) 

Note that s > 0 is the standard deviation. The arguments m and s can be numbers or 
variables. 

Draws from the standard normal distribution also can be obtained as a transforma­
tion of draws from the uniform by using the inverse probability transformation method 
explained in section 4.4.1 ;  that is, by using 

generate varname = invnormal(runiform () ) 

where the new function runifomO replaces uniform ()  in the older versions. 

The following code generates and summarizes three pseudorandom variables with 
1,000 observations each. The pseudorandom variables have Cistributions uniform(O, 1 ) , 
standard normal, and normal with a mean of 5 and a standard deviation of 2 .  

• normal and uniform 
clear 

quietly set obs 1000 
set seed 10101 
generate uniform = runiformO 

II set the seed 

I I uniform ( 0 , 1 )  



4.2.3 Draws from t, chi-squared, F, gamma, and beta 

generate stnormal . �  rnormal ( )  

generate norm5and2 � rnormal (5 ,2 )  
I I  N ( 0 , 1 )  

tabstat uniform stnormal norm5and2 ,  stat(mean s d  skeY kurt min max) col( stat) 
variable 

uniform 
stnormal 

uorm5and2 · 

mean sd skeYness kurtosis ' min 

. 5 150332 .2934123 - . 0899003 1 . 318878 .0002845 . 9993234 

.0 109413 1 . 010856 . 0680232 3 . 130058 -2 . 978147 3 . 730844 
4 . 995458 1 . 970729 - . 0282467 3 . 050581 -3 . 027987 10 . 80905 
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The sample mean and other sample statistics are random variables; therefore, their 
values will, in general, differ from the true population values. As the number of obser­
vations grows, each sample statistic will converge to the population parameter because 
each sample statistic is a consistent estimator for the population parameter. 

For norm5and2, the sample mean and standard deviation are very close to the the­
oretical values of 5 and 2. Output from tabstat gives a skewness statistic of -0.028 
and a kurtosis statistic of 3.051, close to 0 and 3, respectively. 

For draws from the truncated normal, see section 4.4.4, and for draws from the 
multivariate normal, see section 4.4.5. 

4.2.3 Draws from t, chi-squared, F, gamma, and beta 

Stata's library of functions contains a number of generators that allow the user to draw 
directly from a number of common continuous distributions. The function formats are 
similar to that of the rnormal O hmction, and the argument (s) can be a number or a 
variable. 

Let t(n) denote Students' t distribution with n degrees of freedom, x2(m) denote 
the chi-squared distribution with m degrees of freedom, and F(h,  n) denote the F dis­
tribution with h and n degrees of freedom. Draws from t( n) and x2 (h) can be made 
directly by using the rt (dfl and r.:hi2 (dj) functions. We then generate F(h, n) draws 
by transformation because a function for drawing directly from the F distribution is 
not available. 

The following example generates draws from t ( lO ) ,  x2(10) ,  and F(lO ,  5 ) .  

* t ,  chi-squared, and F Yith constant degrees o f  freedom 
clear 

quietly set obs 2000 
set seed 10101 
generate x t  � rt(10)  

generate xc = rchi2 (10)  
generate xfn = rchi2 ( 1 0)I10 

generate xfd = rchi2 (10)15  
genorate xf = xfnlxfd 

II result xt - t ( 10 )  

II  result xc - chisquared(10) 

II result " numerator of F ( 1 0 , 5 )  
II result denominator o f  F ( 10 ,5 )  

II result xf - F(10 ,5 )  
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summarize xt XC Xf 

Variable Dbs Moan Std. Dev.  Min Max 

xt 2000 .0295636 1 . 118426 - 5 . 390713 4 . 290518 
XC 2000 9 . 967206 4 . 530771 . 7512587 35. 23849 
xf 2000 1 . 637549 2 . 134448 . 0511289 34. 40774 

The t(10) draws have a sample mean and a standard deviation close to the theoretical 
v-alues of 0 and v/10/(10 - 2) = 1.118; the x2(10) draws have a sample mean and 
a standard deviation close to the theoretical v-alues of 10 and J25 = 4.4 72; and the 
F(10, .5) draws have a sample mean close to the theoretical value of .5/(5 - 2 ) = 1 .  7. 
The sample standard deviation of2 .134 differs from the theoretical standard deviation 
of )2 x .sz x 13/(10 x 32 x 1 ) = 2. 687. This is because of randomness, and a much 
larger number of draws eliminates this divergence . 

Using rbeta(a ,  b) , we can draw froin a two-parameter beta with the shape param­
eters a, b > 0, mean a/(a + b) , and variance ab/(a + b)2 (a + b + 1 ) . Using rgamma(a ,b  ) , 
we can draw from a two-parameter gamma with the shape parameter a > 0 ,  scale 
parameter b > 0, mean ab, and variance ab2 • 

4.2.4 Draws from binomial, Poisson, and negative binomial 

Stata functions also generate draws from some leading dbcrete distributiont>. Again the 
argument(s) can be a number or a variable: 

Let Bin( n,p) denote the binomial distribution with positive integer n trials (n) and 
success probability p, 0 < p < 1, and let Poisson(m) denote the Poisson distribution 
with the mean or rate parameter m. The rbinomial(n,p) function generates random 
draws from the binomiai distribution, and the rpoisson(m) function makes draws from 
the Poisson distribution. 

We demonstrate these ftmctions with an argument that is a variable so that the 
parameters differ across draws. 

Independent (but not identically distributed) draws from binomial 

As illustration, we consider draws from the binomial distribution, when both the prob­
ability p and the number of trials n may vary over i. 

• Discrete r v " s :  binomia� 
set seed 10101 
generate p1 = runiform ()  I I here p1-uniform ( 0 , 1 )  

generate trials = ceil (10•runiform ( ) )  I I  here # tria�s varies btYn 1 & 1 0  
generate xbin = rbinomial (trials ,p1 )  II  draYs from binomial (n,p1)  



4.2.4 Dmws from binomial, Poisson, and negative binomial 

summarize p1 trials xbin 
Variable 

p1 
trials 

xbin 

Dbs 

2000 
2000 
2000 

Mean 

.5155468 
5 .438 
2 . 753 

Std. Dev. Min Max 

.2874989 . OOQ2845 . 9995974 
2 . 887616 10 
2 . 434328 0 10  
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The DGP setup implies that the number of trials n i s  a random variable with an expected 
value of 5 .5 and that the probability p is a random variable with an expected value of 
0.5. Thus we expect that xbin has a mean of 5 .5  x 0 . .5 = 2 .75 , and this is approximately 
the case here. 

Independent (but not identically distributed} draws from Poisson 

For simulating a Poisson regression DGP, denoted y � Poisson(.u ), we need to make 
draws that are independent but not identically distributed, with the mean .u varying 
across draws because of regTessors. 

We do so in two ways. First, let ,U; equal xb=4+2*X with x=rt.inif orm ( ) . Then 
4 < Jl.i < 6. Second, let p; equal xb times xg where xg=rgamma ( l , l ) ,  which yields 
a draw from the gamma distribution with a mean of 1 x 1 = 1 and a variance of 
1 x 1 2  = 1 .  Then IJ; > 0. In both cases, the setup can be shown to be such that the 
ultimate draw has a mean of 5, but the variance differs from 5 for the independent and 
identically distlibuted (i .i .d.) Poisson because in neither case are the draws from an 
identical distribution. We obtain 

• Discrete rv ·s :  independent poisson and negbin draws 
set seed 10101 

generate xb= 4 + 2•runiform0 
generate x g  = rgamma ( 1 , 1 )  
generate xbh = xb•xg 
generate xp = rpoisson(5) 

generate xp1 = rpoisson(xb) 
generate xp2 � - rpoisson(xbh) 

summarize xg xb xp xp1 xp2 
Variable Dbs Mean 

xg 
x b  
xp 

xp1 
xp2 

2000 
2000 
2000 
2000 
2000 

1 . 032808 
5 . 031094 

5 . 024 
4 . 976 

5 . 1375 

II draw from gamma;E(v)=1  
II apply multiplicative heterogeneity 

II result xp - Poisson(5) 

II result xp1 - Poisson(xb) 
I I result xp2 - W(xb) 

Std. Dev. Min Max 

1 . 044434 . 000112 8. 00521 
.5749978 4 . 000569 5 . 999195 
2 . 300232 0 14 
2 . 239851 0 14 
5 . 676945 0 44 

The xb variable lies between 4 and 6, as expected, and the xg gamma variable has a mean 
and variance close to 1 ,  as expected. For a benchmark comparison, we make draws of xp 
from Poisson(5), which has a sample mean close to 5 and a sample standard deviation 
close to Y5 = 2.236. Both xpl and xp2 have means close to 5. In the case of xp2, 
the model has the multiplicative unobserved heterogeneity term xg that is itself drawn 
from a gamma distribution with shape and scale parameter both set to 1 .  Introducing 
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this type of heterogeneity means that xp2 is drawn from a distribution with the same 
mean as that of xpl, but the variance of the distribution is larger. More specifically, 
Var(xp2 lxb) = xb* (l+xb) , using results in section 17.2.2, leading to the much larger 
standard deviation for xp2. 

The second examp:e makes a draw from the Pois::;on-g<unma mixture, yielding the 
negative binomial distribution. The rnbinomial () function draws from a different 
parameterization of the negative binomial distribution. For this reason, we draw from 
the Pois::;on-gamma mixture here and in chapter 17. 

Histograms and density plots 

For a vi::;ual depiction, it is often useful to plot a histogTam or kernel density estimate 
of the generated random numbers. Here we do this for the draws xc from x2(10) and 
xp from Poisson(5) . The results are shown in figure 4 . 1 .  

• Example o f  histogram and kernel density plus graph combine 
quietly tYoYay (histogram xc , Yidth ( l ) )  (kdensity xc ,  lYidth(thick) ) ,  

> ti tle( "DraYs from chisquared(lO) " )  

quietly graph save mus04cdistr.gph, replace 
quietly tYoYay (histogr�n xp, discrete) (kdensity xp, lYidth(thick) Y ( l ) ) ,  

> title ( " DraYs from Poisson(mu) for 5<mu< 6" )  

. quietly graph save mus04poissdistr.gph, replace 

. graph combine mus04cdistr. gpb mus04poissdistr.gph, 
> title ( "Random-number generation examples " ,  margin(b=2) size (vlarge) )  

Random-number generation examples 

Draws from chisquared(1 0) Draws from Poisson(mu) for 5<mu<6 

30 40 

I !:J•lli\!?�;,, Denolty -- kdcn::;tty xc I I k-;iJw,'Ki! Den� lty -- kdonolty xp I 
Figure 4 . 1 .  x2(10) and Poisson(5) draws 



4.3 Distribution of the sample mean 

4.3 Distribution of the sample mean 
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As  an introductory example of simulation, we demonstrate the central limit theorem 
result, (xN - tL)/(cr/VH) ----> N(O, 1 ) ;  i .e . ,  the sample mean is approximately normally 
distributed as N ----> oo. We consider a random variable that has the uniform distribu­
tion, and a sample size of 30. 

We begin by drawing a single sample of size 30 of the random variable X that is uni­
formly distributed on (0 ,  1 ) ,  using the runifom.O random-number function. To ensure 
the same results are obtained in future runs of the same code or on other machines, we 
use set seed. We have 

• Draw 1 sample of size 30 from uniform distribution 
quietly set obs 30 
set seed 10101 
generate x � runiform ( )  

To see the results, we use summarize and histogram. We have 

• Summarize x and produce a histogram 
summarize x 

Variable ! Dbs Mean 

X i 30 .5459987 

Std. Dev. Min Max 

.2803788 . 0524637 . 9983786 

quietly histogram x ,  width(0 . 1 )  xtitle("x from one sample " )  

.4 
x from ooo �amplo 

Figure 4 .2 .  Histogram for one sample of size 30 

The summary statistics show that 30 observations were generated and that for this 
sample x = 0 .546. The histogram for this single sample of 30 uniform draws, given in 
figure 4.2, looks nothing like the bell-shaped curve· of a normal , because we are sampling 
from the uniform distribution. For very large samples, this histogram approaches a 
horizontal line with a density value of 1 .  

· 
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To obtain the distribution of the sample mean by simulation, we redo the preceding 
10,000 times, obtaining 10,000 samples of size 30 and 10,000 sample means x. These 
10,000 sample means are draws from the distribution of the sample-mean estimator. By 
the central limit theorem, the distribution of the sample-mean estimator has approxi­
mately a normal distribution. Because the mean of a uniform(O, 1) distribution is 0 .5 ,  
the mean of the distribution of  the sample-mean estimator is  0 .5 .  Because the standard 
deviation of a uniform(O, 1) distribution is v'l7'i2 and each of the 10,000 samples is 
of size 30, the standard deviation of the distribution of the sample-mean estimator is 
J(l/12)/30 = 0.0527. 

4.3.1 Stata program 

A mechanism for repeating the same statistical procedure 10,000 times is to write a 
program (see appendix A.2 for more details) that does the procedure once and use the 
simulate command to run the program 10,000 times. 

We name the program onesample and define it to be r-class, meaning that the ulti­
mate result, the sample mean for one sample, is returned in r O . Because we name this 
result meanforonesample, it will be returned in r (meanforonesample) . The program 
has no inputs, so there is no need for program arguments. The prognun drop:; any 
existing data on variable x, sets the sample size to 30, draws :30 uniform variates, and 
obtains the sample mean with summarize. The summarize command is it::;elf an r-class 
command that store:; the sample mean in r (mean) ; see section l .o.1 . The last line of 
the program returns r (mean) as the result meanforonesample. 

The program is 

• Program to draY 1 sample of size 30 from uniform and return sample mean 
program onesample ,  rclass 
1 .  drop _all 
2 .  quietly s e t  obs 30 
3 .  generate x = runiform( ) 
4 .  summarize x 
5 .  return scalar meanforonesample = r(mean) 
6 .  end 

To check the program, we run it once, using the same seed as earlier. We obtain 

* Run program onesample once as a check 
set seed 10101 

onesample 
Variable J Obs 

return list 
scalar s :  

r(meanforonesample) 

30 

Mean 

.5459987 

S td. Dev. Min Max 

.2803788 . 0524637 . 9 983786 

. 5459987225631873 

The results for one sample are exactly the same as those given earlier. 
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4.3.2 The simulate command 
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The simulate command runs a specified command # times, where the user specifies 
#. The basic syntax is 

simulate [ exp_list ] , reps ( #) [ options ] : command 

where command is the i1ame of the command, often a user-written progTam, and # is 
the number of simulations or replications. The quantities to be calculated and stored 
from command are given in exp_list. We provide additional details on simulate in 
section 4.6.1 . 

After simulate i s  run, the Stata dataset currently in memory is replaced by a 
dataset that has # observations, with a separate variable for each of the quantities 
given in exp_list. 

4.3 .3 Central limit theorem simulation 

The simulate command can be used to run the onesample program 10,000 times, yield­
ing 10,000 sample means from samples of size 30 of uniform variates. We additionally 
used options that set the seed and suppress the output of a dot for each of the 10,000 
simulations. We have 

• Run program onesample 10 , 000 times to get 1 0 , 000 sample means 
simulate xbar � r (meanforonesample) , seed(10101) reps(10000) nodots:  

> onesample 

command : onesample 
xbar : r(meanforonesamplo) 

The result from each sample, r (meanf oronesample) , is stored as the variable xbar. 

The simulate command overwrites any existing data with a dataset of 10,000 "ob­
servations" on x. We summarize these values, expecting them to have a mean of 0.5 
and a standard dev�ation of 0.0527. We also present a histogram overlaid by a normal 
density curve with a mean and standard deviation, which are those of the 10,000 values 
ofx. We have 

• Summarize the 10 ,000 sample means and draw histogram 
summarize xbar 

Variable Obs 

xbar 10000 

Mean 

.4995835 

Std. Dev. Min Max 

. 0533809 . 3008736 . 6990562 

quietly histogram xbar , norma� xtitl e( " xbar from many samples")  

(Continued on next page) 
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xbar from m.:�ny sampler. 

Figure 4.3. Histogram of the 10,000 sample means, each from a sample of size 30 

The histogram given in figure 4.3 is very close to the bell-shaped curve of the normal. 

There are several possible variations on this example. Different distributions for 
x can be used with different random-number functions in the generate command for 
x. As sample size (set obs) and number of simulations (reps) increases, the results 
become closer to a normal distribution. 

4.3.4 The postfile command 

In this book, we generally use simulate to perform simulations. An alternative method 
is to use a looping command, such as forvalues, and within each iteration of the 
loop use post to write (or post) key results to a file that is declared in the postfile 
command. After the loop ends, we then analyze the data in the posted fi le. 

The postfile command has the following basic synta.x: 

pos tfile postname newvarlist using filename [ , every (#)  replace ] 

where postname is an internal filename, newvarlist contains the names of the variables 
to be put in the dataset, and filename is the external filename. 

The post postname ( exp1 ) ( exp2 ) . . . command is used to write expl , exp2 , . . . to 
the file. Each expression needs to be enclosed in parentheses. 

The postclose postname command ends the posting of observations. 

The postfile command offers more flexibility than simulate and, unlike simulate, 
does not lead to the dataset in memory being overwritten. For the examples in this 
book, simulate is adequate. 
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4.4 Pseudorandom-number generators: Further details 

4.3.5 Alternative central limit theorem simulation 

We illustrate the use of postfile for the central limit theorem example. We have 

• Simulation using postfile 
set seed 10101 

postfile sim_mem xmean using simresults , replace 
forvalues i = 1/10000 { 
2 .  drop _all 
3 .  quietly set obs 30 
4 .  
5 .  
6 .  
7 . 
8 .  } 

tempvar x 
generate · x ·  = runiform() 
quietly summarize · x ·  
post sim_mem (r(mean)) 

postclose sim_�em 
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The postfi1e command declares the memory object in which the results are stored, 
the names of variables in the results dataset, and the name of the results dataset file. 
In this example, the memory object is named sim_mem, X1!lean will be the only variable 
in the results dataset file, and simresul ts .d ta will be the results dataset file. (The 
replace option causes any existing simresul ts .d ta to be replaced.) The forvalues 
loop (see section 1 .8) i:; u:;ed to perform 10 ,000 repetition:;. At each repetition, the 
sample mean, result r (mean) , is posted and will be included as an observation in the 
new xmean variable in simresult s . dta. 

To see the results, we need to open simresul ts . d ta and summarize. 

• See the results stored in simresults 
Use simresul t s ,  clear 
summarize 

Variable Dbs Mean 

xmean 10000 .4995835 

Std. Dev.  Min Max 

. 0533809 . 3008736 . 6990562 

The results are ide�1tical to those in section 4.3.3 with simulate due to using the same 
seed and same sequence of evaluation of random-number fLmctions. 

The simulate command suppresses all output within the simulations. This is not 
the case for the forvalues loop, so the quietly prefix was used in two place� in the code 
above. It can be more convenient to instead apply the quietly prefix to all commands 
in the entire forvalues loop. 

4.4 Pseudorandom-number generators: Further details 

In this section, we present further details on ra.I,ldom-number generation that explain 
the methods used in section 4.2 and are useful for making draws from additional distri­
butions. 
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Commonly used methods for generating pseudorandom samples include inverse­
probability transforms, direct transformations, accept-reject methods, illL-..:ing and com­
pounding, and Markov chains. In what follows, we emphasize application and refer the 
interested reader to Cameron and Trivedi (2005, ch. 12) or numerous other texts for 
additional details. 

4.4.1 Inverse-probability transformation 

Let F(x) = Pr(X ::::; x) denote the cumulative distribution function of a random variable 
x. Given a draw of a uniform variate r, 0 ::::; r ::::; 1 ,  the inverse transformation x = 

p- I (r) gives a unique value of x because F (x) is nondecreasing in x. If r approximates 
well a random draw from the uniform, then x = p - l (r) will approximate well a random 
draw from F(x).  

A leading application is to the standard normal distribution. Then the inverse of 
the cumulative distribution function ( c.d.f.) , 

F (x) = <P(x) = jx �e-=212dz 
-00 y 27i 

has no closed-form solution, and there is consequently no analytical expression for 
<p-1 (x) . Nonetheless, the inverse-transformation method is easy to implement be­
cause numerical analysis provi(k;s fnnctions that calr.nlate a very gooci approximation 
to <P- 1 (x). In Stata, the function is invnonnal ( ) . Combining the two steps of drawing 
a random uniform variate and evaluating the inverse c.d.f., we have 

• Inverse probability transformation example : standard normal 
quietly set obs 2000 
set seed 10101 

generate xstn = invnormal(runiform( ) )  

This method was presented i n  section 4.2 .2 but is now superseded by the rno:nnal 0 
function. 

As another application, consider drawing from the unit exponential, with c.d.f. 
F(x) = 1 - e -"'. Solving r = 1 - e-x yields x = - ln( l - r) . If the uniform draw 
is, say, 0.640, then x = - ln(l - 0.640) = 1.022. With continuous monotonically in­
creasing c.d.f., the inverse transformation yields a unique value of x, given r. The Stata 
code for generating a draw from the unit exponential illustrates the method: 

. • Inverse probability transformation example:  unit exponential 

. generate xue = -ln(1-runiform( ) )  

For discrete random variables, the c.d.f. is a step function. Then the inverse is  not 
unique, but it can be uniquely determined by a convention for choosing a value on the 
fiat portion of the c.d.f., e.g., the left limit of the segment. 

In the simplest case, we consider a Bernoulli random variable taking a value of 1 
with a probability of p and a value of 0 with a probability of 1 - p. Then we take a 
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uniform draw, u, and set y = 1 i f  u ::; p and y = 0 i f  u > p. Thus, if p = 0.6, we obtain 
the following: 

• Inverse probability transformation example: Bernoulli (p � 0 . 6) 
generate xbernoulli � runiforinO > 0 .  6 I I Bernoull'i (0 .  6) 
summarize xstn xue xbernoulli 

Variable Dbs Mean Std. Dev. Min Max 

xstn 2000 . 0481581 1 . 001728 - 3 . 445941 3 . 350993 
xue 2000 .9829519 1 . 000921 . 0003338 9 . 096659 

xbernoulli 2000 . 4055 .4911113 0 

This code uses a logical operator that sets y = 1 if the condition is met and y = 0 
otherwise; s�e section 2.4. 7. 

A more complicated discrete example is the Poisson distribution because then the 
random variable can potentially take an infinite number of values. The method is to 
sequentially calculate the c.d.f. Pr(Y ::; k) for k =  0, 1 ,  2, . . . .  Then stop when the first 
Pr(Y ::; k) > u, where u is the uniform draw, and set y = k. For example, consider the 
Poisson with a mean of 2 and a uniform draw of 0.701. We first calculate Pr(y ::; 0) = 
0.135 < u, then calculate Pr(y ::; 1) = 0.406 < ·u, then calculate Pr(y ::; 2) = 0.677 < u, 
and finally calculate Pr(y ::; :3) = 0.857. This last calculation exceeds the uniform 
draw of 0. 701, so stop and set y = 3. Pr(Y ::; k) is computed by using the recursion 
Pr(Y ::; k) = Pr(Y ::; k - 1) + Pr(Y = k). 

4.4.2 Direct transformation 

Suppose we want to make draws from the random variable Y, and from probability 
theory, it is known that Y"is a transformation of the random variable X, say, Y = g(X) .  

In this situation, the direct transformation method obtains draws of  Y by drawing X and then applying the transformation g( · ) .  The method is clearly attractive when it 
is easy to draw X �d evaluate g( · ) .  

Direct transformation is particularly easy to  illustrate for well-known transform::; 
of a standard normally distributed random variable. A x2(1) draw can be obtained 
as the square of a draw from the standard normal; a x2(m) draw is the sum of m 
independent draws from x2(1 ) ;  an F(ml , m2 )  draw is (vJ/mi ) / (v2/m2), where Vi and 
v2 are independent draws from x2(mt) and x2(m2); and a t(m) draw is u/ � where 
u and v are independent draws from N(O, 1) and x2(m). 

4.4.3 Other methods 

In some cases, a distribution can be obtained as �" mi."<ture of distributions. A leading 
example is the negative binomial, which can be obtained as a Poisson-gamma mixture 
(see section 4.2.4) . Specifically, if y l .\ is Poisson(�) and .>.lp, ex is gamma with a mean 
of p, and a variance of cxp, then YifL, ex is a negative binomial distributed with a mean 
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of JL and a variance of f.L + a.!J-2 . This implies that we can draw from the negative 
binomial by using a two-step method in which we first draw (say, v) from the gamma 
distribution with a mean equal to 1 and then, conditional on v, draw from Poisson(�J-v). 
This example, using mixing, is used again in chapter 17. 

More-advanced methods include accept�reject algorithm:; and importance sampling. 
Many of Stata's pseudorandom-number generators use accept�reject a.lgorithms. Type 
help random number functions for more information on the methods u:;ecl by Stata. 

4.4.4 Draws from truncated normal 

In ::;imulation-based estimation for latent normal modeb with censoring or :;election, it 
i::; often nece::;::;ary to generate draw:; from a truncated normal distribution. The inver::;e­
probability transformation can be extended to obtain draw:; in this case. 

Consider making draw:; from a truncated normal. Then X ""' T N(<J,u) (JL, a2) ,  where 
without tnmcation X "' N(JL. a2 ) .  With truncation, realizations of X are restricted to 
lie between left truncation point a and right truncation poir:t b. 

For simplicity, fi.r:>t con::;ider the standard normal case (JL = 0, cr = 1) and let 
Z "' N(O, 1 ) .  Given the draw ·u from the uniform distribution, :r i::; defined by the 
::;olution of the inverse-probability transformation equation 

Pr(a s; Z s; x) iD(x) - <.!?(a) 
· u  = F(x) = 

Pr(a s; Z s; b)
= 

<.!?(b) - <.I?( a) 

Rearranging, <.!?( x) = <.!?(a) + {<.!?(b) - <.!?(a )}u so that ::;olving for x we obtain 

:z· = iD�1 [<.T?(a) + {<.!?(b) - <.!?(a ) } u] 

To extend this to the general case, note that if Z ""' N(,.. , a2 ) then Z* = (Z - IJ-)/a ""' 
N(O, 1 ) ,  and the truncation points for z• . rather than Z, are a• = (a - IJ-)/o· and 
b' = (b - f.L)/cr. Then 

x = f.L + O"iD� 1 [<.l?(a* ) + {<.l?(b*) - <.I?( a* ) }  u] 

As an example, we consider draws from N(5, 42) for a random variable truncated to 
the range [0, 12 ] .  

• DraYs from truncated normal x - N(mu, sigma-2) i n  [a,b] 
quietly set obs 2000 
set seed 10101 

scalar a � 0 
scalar b � 12 
scalar mu � 5 

scalar sigma = 4 
generate u = runiformO 

II loYer truncation point 
II upper truncation point 

II mean 

II standard deviation 
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generate �=normal ( ( a-mu ) lsigma)+u• (normal( (b-mu)lsigma)-normal ( ( a-mu)lsigma) ) 

generate xtrunc = mu + sigma•invnormal (�) 

summarize xtrunc 
Variable Obs 

xtrunc 1 2000 

Mean Std. Dev.  

5 . 605522 2 . 944887 

Min Max 

. 005319 1 1 . 98411 
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Here there is more truncation from below, because a is 1.2.So- from f.L whereas b is 
1.75<7 from �,, SQ we expect the truncated mean to exceed the untruncated mean. Accord­
ingly, the sample mean is 5.606 compared with the untruncated mean of 5. Tnmcation 
reduces the range and, for most but not all distributions, will reduce the variability. 
The sample standard deviation of 2 .945 is less than the untruncated standard deviation 
of 4. 

An altern ative way to draw X � TN(a,b) (�,, o-
2 ) is to keep drawing from untruncated 

N(p., o-2 ) until the realization lies in (a, b) .  This method will be very inefficient if, for 
example, (a, b) = ( -0.01 ,  0 .01 ) .  A Poisson example is given in section 17.3.5. 

4.4.5 Draws from multivariate normal 

Making draws from multivariate distributions is generally more complicated. The 
method depends on be specifi c case under consideration, and inverse-transformation 
methods and transformation methods that work in the univariate cose may no longer 
apply. 

However, making draws from the multivariate normal is relatively straightforward 
because, unlike most other distributions, linear combinations of normals are also normal. 

Direct draws from multivariate normal 

The drawnorm command generates draws from N(p,, �) for the user-specifi ed vector 
p, and matrix �. For example, c0nsider making 200 draws from a standard bivariate 
normal distribution·with means of 10 and 20,  variances of 4 and 9, and a correlation of 
0 . . 5 (so the covariance is 3) .  

• Bivariate normal example: 
* means 10 , 20; variances 4, 9; and correlation 0 . 5  
clear 
quietly set obs 1000 
set seed 10101 
matrix MU � (10 , 20) 
scalar sig12 = 0 . 5•sqrt ( 4•9) 

II MU is 2 x 1 

matrix SIGMA = ( 4 ,  sig12 \ s ig12, 9) II SIGMA is 2 x 2 

dra�norm y1 y 2 ,  means(MU) cov(SIGMA) 
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summarize y1 y2 
Variable Dbs Mean Std. Dev.  Min Max 

y1 1000 1 0 . 08618 2 . 082605 3 . 108118 1 6 . 49892 
y2 1000 20 .20292 2 . 999583 10 . 12452 29. 79675 

correlate yl y2 
(obs=1000) 

y 1  y2 

y1 1 . 0000 
y2 0 . 5553 1 . 0000 

The sample means are close to 10 and 20, and the standard deviations are close to 
J4 = 2 and /9 = 3. The sample correlation of 0.5553 differs somewhat from 0.50,  
though this difference disappears for much larger sample sizes. 

Transformation using Cholesky decomposition 

The method uses the result that if z ""' N(O, I) then x = J-L + Lz ""' N(p,, LL' ) . It is easy 
to draw z c' N(O, I) because z is just a column vector of univariate normal draws. The 
transformation method to make draws of x "' N(p,, 2::) evaluates x = J-L + Lz, where 
the matrix L satisfies LL' = 2::. More than one matrix L satisfies LL' = 2::, the matri..'< 
analog of the square root of 2::. Standard practice is to use the Cholesky decomposition 
that restricts L to be a lower triangular matrix. Specifically, for the trivariate normal 
distribution, let E(zz') = 2:: = Lzz'L', where z "' N  ( O ,I3) d.nd 

L = [ ��� l�2 � ] 
131 132 133 

Then the following transformations of z' = (z1 z2 z3) yield the desired multivariate 
normal vector x ""'  N(p,, 2:: ) :  

x1 = IJ.J + luz1 
X2 = /.l2 + I21 Z1 + b2z2 
X3 = /t3 + I31Z1 + h2z2 + l33Z3 

4 .4 .6 Draws using Markov chain Monte Carlo method 

In some cases, making direct draws from a target joint (multivariate) distribution is 
difficult , so the objective must be achieved in a different way. However, if it is also 
possible to make draws from the distribution of a subset, conditional on the rest, then 
one can create a Markov chain of draws. If one recursively makes draws from the con­
ditional distribution and if a sufficiently long chain is constructed, then the distribution 
of the draws will, under some conditions, converge to the distribution of independent 
draws from the stationary joint distribution. This so-called Markov chain Monte Carlo 
method is now standard in modern Bayesian inference. 
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To be concrete, let Y = (Y1 ,  Y2) have a bivariate density of  f(Y) = f(Y1, Y2) ,  and 
suppose the two conditional densities f(Y1 JY2) and f(Y2 I Y1)  are known and that it is 
possible to make draws from these. Then it can be shown that alternating sequential 
draws from j(Y1 I Y2) and j(Y2 IY1)  converge in the limit to draws from f(Y1 ,  Y2), even 
though in general f(Y1, Y2) f. f(Y1 J Y2)j(Y2 JY1 )  (recall that f(Y1 ,  Y2) = J(Y1 I Y2)J(Y2) ) . 
The repeated recursive sampling from f(Yt l Y2) and f(Y2 JY1 )  is called the Gibbs sampler. 

We illustrate the Markov · chain lVIonte Carlo approach by making draws from a 
bivariate normal distribution, f(Y1 ,  Y2) .  Of course, using the drawnorm command, it is 
quite straightforward to draw samples from the bivariate normal. So the application 
presented is illustrative rather than practical. The relative simplicity of this method 
comes from the fact that the conditional distributions f(Y1 J Y2)  and f(Y2 JY1 )  derived 
from a bivariate normal are also normal. 

vYe draw bivariate normal data with means of 0, variances of 1 ,  and a correlation of 
p = 0.9. Then Yi iY2 � N {0, ( 1 - p2 ) }  and Y2IY1 � N {0 ,  (1 - p2) } .  Implementation 
requires looping that is much easier using matrix programming language commands. 
The following Mata code implements this algorithm by using commands explained in 
appendix B.2. 

• MCMC example: Gibbs for bivariate normal mu's=O v's=1 corr=rho=0 .9  
set  seed 10101 
clear all 
set obs 1000 

obs Yas 0 ,  noY 1000 
. generate double y1 = .  

(1000 missing values generated) 

. generate double y2 = .  
(1000 missing values generated) 

mat a :  
-------------------- mata (type end to exit) -­

sO = 10000 

s1 = 1000 
y1 = J(sO+s1 , 1 , 0 )  
y2 = J (sO+s1 , 1 , 0) 

II Burn-in for the Gibbs sampler (to be discarded) 

II Actual draYs used from the Gibbs sampler 

II Initialize y1 
II Initialize y2 

rho = 0. 90 II Correlation parameter 
for(i=2;  i<=sO+ s 1 ;  i++) { 

> y 1 [i , 1] ( (1 -rho-2) -o . 5 ) • (rnormal( 1 ,  1 ,  0 ,  1 ) )  + rho•y2 [i-1 , 1] 
> y 2 [ i , 1 ]  = ( ( 1 -rho-2) -0 . 5 ) • (rnormal(1 , 1 ,  0 ,  1 ) )  + rho•y1 [ i ,1 ]  
> } 

y = y 1 , y2 
y = y [ l (s0+1) , 1  \ (sO+s 1 ) , .  I ]  I I  Drop the burn-ins 
mean (y) II Means of y 1 ,  y2 

2 

1 1 . 0831308345 . 0647158328 
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variance (y) 
[symmetric] 

1 . 104291499 
1 . 005053494 

2 

1 . 1087737 41 ; I �------------------� 

correlation(y) 
[symmetric] 

2 

21 l--------�----------� . . 9082927488 

end 
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II Variance matrix of y 1 ,  y2 

II Correlation matrix of y 1 ,  y2 

Many draws may be needed before the chain converges. Here we assume that 11,000 
draws are sufficient, and we discard the first 10,000 draws; the remaining 1,000 draws 
are kept. In a real application, one should run careful checks to ensure that the chain 
has indeed converged to the desired bivariate normal. For the example here, the sample 
means of Y1 and Y2 are 0.08 and 0.06, differing quite a bit from 0. Similarly, the sample 
variances of 1.10 and 1 . 11  differ from 1 and the sample covariance of 1.01 differs from 
0 .9, while the implied correlation is 0.91 as desired. A longer Markov chain or longer 
burn-in may be needed to generate numbers with desired properties for this example 
with relatively high p. 

Even given convergence of the Markov chain, the sequential draws of any random 
variable will be correlated. The output below shows that for the example here, the 
first-order correlation of sequential draws of Y2 is 0.823. 

mat a: 
-------------------- mata (type end to exit) ----

y2 = y [ 1 2 '  2 ' s 1 ' 2 1 ]  

y2lag1 = y [ l 1 , 2  \ (s1-1) , 2 1 ]  
y2andlag1 = y 2 , y2lag1 
correlation(y2andlag1 , 1 )  

[symmetric] 
2 

� I �----------� 
.822692407 

end 

4.5 Computing integrals 

I I Correlation bet1.1een y 2  and y 2  lag 1 

Some estimation problems may involve definite or indefinite integrals. In such cases, 
the integral may be numerically calculated. 
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4.5.1 Quadrature 

For one-dimensional :Utegrals of the form J: f(y)dy, where possibly a =  -oa, b = oa, or 
both, Gaussian quadrature is the standard method. This approximates the integral by 
a weighted sum of m terms, where a larger m gives a better approximation and often 
even m = 20 can give a good approximation. The formulas for the weights are quite 
complicated but are given in standard numerical analysis books. 

One-dimensional integrals often appear in regression models with a random intercept 
or random effect. In many nonlinear models, this random effect does not integrate 
out analytically. Most often, the random effect is normal so that integration is over 
( -oa, oa) and Gauss-Hermite quadrature is used. A leading example is the random­
effects estimator for nonlinear panel models fitted using various xt commands. For 
Stata code,. see, for example, the user-written command rfprobi t .  do for a random· 
effects probit package or fi le glla=. ado for generalized linear ad_ditive models. 

4.5.2 Monte Carlo integration 

Suppose the integral is of the form 

E {h(Y)} = 1b h(y)g(y)dy 

where g(y) is a density function. This can be estimated by the direct Monte Carlo 
integral estimate 

where y1 , . . . , y5 are S independent pseudorandom numbers from the density g(y ), ob­
tained by using methods. described earlier. This method works if E {h(Y)} exists and 
S -+  oa. 

This method can be applied to both defi11ite and indefinite integrals. It has the added 
advantage of being immediately applicable to multidimensional integrals, provided we 
can draw from the-appropriate multivariate distribution. It has the disadvantage that 
it will always provide an estimate, even if the integral does not exist. For example, to 
obtain E(Y) for the Cauchy distribution, we could average S draws from the Cauchy. 
But this would be wrong because the mean of the Cauchy does not exist. 

As an example, we consider the computation of E[eJ-.:p{- exp (Y) }] when y � N (0, 1 ) .  
This is the integral: 

E [exp {- exp(Y)}] = � exp {- exp(y) } exp ( -y-/2) dy 
!00 1 ., 

-oo v 27r · 

It has no closed-form solution but can be proved to exist. We use the estimate 
� 

· 

1 '""'s E [exp {- exp(Y) }] = S L...-,71 exp {- exp(y" ) }  

where y" is the sth draw of S draws from the N(O, 1 )  distribution. 
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This approximation task can be accomplished for a specified value of S, say, 100, by 
using the following code. 

• Integral evaluation by Monte Carlo simulation Yith S=100 
clear all 
quietly set obs 100 
set seed 10101 

generate double y � invnormal (runiform ( ) )  
generate double gy � exp(-exp ( y ) )  

quietly summarize g y ,  meanonly 
scalar Egy � r (mean) 
display "After 100 draYs the MC estimate of E [exp ( -exp (x) ) ]  is " Egy 

After 100 draYs the MC estimate of E[exp(-exp(x) ) )  is .3524417 

The Monte Carlo estimate of the integral is 0.352, based on 100 draws. 

4.5.3 Monte Carlo integration using different S 

It is not known in advance what value of S will yield a good Monte Carlo approximation 
to the integral. We can compare the outcome for several different values of S (including 
S = 100), stopping when the estimates stabilize. 

To investigate this, we replace the preceding code by a Stata program that has as 
an arg1.1ment S, the number of simulations. The program can then be called and run 
several times with different values of S. 

The program is named mcin tegra tion. The number of simulations is  passed to  the 
program as a named positional argument, numsims. This variable is a local variable 
within the program that needs to be referenced using quotes. The call to the program 
needs to include a value for numsims. Appendix A.2 provides the details on writing a 
Stata prog-ram. The program is r-class and returns results for a single scalar, E{g (y )} , 
where g (y ) = exp { - exp (y)} . 

• Program mcintegration to compute Eg(y) numsims times 
program mcintegration, rclass 
1 .  version : 0 . 1  
2 .  args numsims // Call to program Yill include value for numsims 
3 .  drop _all 
4 .  quietly set obs "numsims 
5 .  set seed 10101 
6 .  generate double y � rnormal(O) 
7 .  generate double gy � exp(-exp (y) )  
8 .  quietly summarize gy ,  meanonly 
9 .  scalar Egy � r(mean) 

10.  display "#simulations: " /.9.0g "numsims · /// 
> " MC estimate of E [exp(-exp(x) ) )  is " Egy 

1 1 .  end 

The prog-ram is then run several times, for S = 10, 100, 1000, 10000, and 100000. 
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. * Run program mc integration S � 1 0 ,  100,  . . . .  , 100000 times 
. mcintegration 10 
#simulations : 10 MC estimate of E [exp-exp (x)] is . 30979214 

mcintegration 100 
#simulations : 100 MC estjma te of E [exp-exp Co:ll  is .3714466 
. mcintegration 1000 
#simulations : 1000 MC estimate of E[exp-exp (x)]  is . 38146534 

mcintegration 10000 
#simulations : 10000 MC estimate of E [exp-exp (x) ] is . 38081373 

mcint·egration 100000 
#simulations : 100000 MC estimate of E [exp-exp (x)] is . 38231031 

13.5 

The estimates of E{g(y)} stabilize a� S ->  oo, but even with S = 105 , the estimate 
changes in the third decimal place. 

4.6 Simulation for regression: Introduction 

The simplest use of simulation methods is to generate a single dataset and estimate the 
DGP parameter 8. Under some assumptions, if the estimated parameter 0 differs from 
(} for a large sample size, the estimator is probably inconsistent. We defer an example 
of this simpler simu;ation to section 4.6.4. 

1-'Iore often, (} is estimated from each of S generated datasets, and the e�timates 
are t:>loretl and ::;ummarized to learn about the distribution of 0 for a given DGP. For 
example, this approach is necessary if one wants to check the validity of a standard 
error estimator or the finite-sample size of a test. This approach requires the ability to 
perform the same analysis S times and to store the results from each simulation. The 
simplest approach is to write a Stata program for the analysis of one simulation and 
then use simulate to run this program many times. 

4.6.1 Simulation example: OLS with x2 errors 

In this section, we use simulation methods to investigate the finite-sample properties 
of the OLS estimator with random regressors and skewed errors. If the errors are i . i .d. ,  
the fact that they are skewed has no effect on the large-sample properties of the OLS 
estimator. However, when the errors are skewed, we will need a larger sample size for the 
asymptotic distribution to better approximate the finite-sample distribution of the OLS 
estimator than when the errors are normal. This example also highlights an important 
modeling decision: when y is skewed, we sometimes choose to model E(lny [x) instead of 
E(y[x) because we believe the disturbances enter multiplicatively instead of additively. 
This choice is driven by the multiplicative way the error affects the outcome and is 
independent of the functional form of its distribution. As illustrated in this simulation, 
the asymptotic theory for the OLS estimator works well when the errors are i.i.d. from 
a skewed distribution. 
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We consider the following DGP: 

where {31 = 1, {32 = 2, and the sample size N = 150. For this DGP, the error u is 
independent of the regressor x (ensuring consistency of OLS) and has a mean of 0, 
variance of 2,  skewness of JS, and kurtosis of 15.  By contrast, a normal error has a 
skewness of 0 and a kurtosis of 3. 

We wish to perform 1,000 simulations, where in each simulation we obtain parameter 
estimates, standard errors, t-values for the t test of H0 : {32 = 2, and the outcome of a 
two-sided test of H0 at level 0.05. 

Two of the most frequently changed parameters in a simulation study are the sample 
size and the number of simulations. For this reason, these two parameters are almost 
always stored in something that can easily be changed. We use global macros. In the 
output below, we store the number of observations in the global macro numobs and the 
number of repetitions in the global macro numsims. We use these global macros in the 
examples in this section. 

• defining global macros for sample size and number of simulations 
global numobs 150 II sample size N 
global numsims "1000" II number of simulations 

We first write the chi2da ta program, which generates data on y, performs OLS, and 
returns lJ2 , s13� , t2 = (/h - 2)/ s13, , a rejection indicator 7"2 = 1 if lt2 l  > to.o2s (148) ,  and 
the p-value for the two-sided t test. The chi2da ta program is an r-class program, so 
these results are returned in r ( ) using the return command. 

• Program for finite-sample properties of OLS 
program chi2data ,  rclass 
1 .  version 1 0 . 1  
2 .  drop _all 
3 .  set obs $numobs 
4 .  
5 .  
6 .  
7 .  
8 .  
9 .  

10 .  
1 1 .  
1 2 .  end 

generate double x = rchi2(1 )  
generate y = 1 + 2•x + rchi2 ( 1 ) - 1  I I  demeaned chi-2 error 
regress y x 
return scalar b2 =_b [x] 
return scalar sc2 = _se [x] 
return scalar t2 = (_b[x]-2)l_se [x] 
return scalar r2 = abs(return(t2))> invttail($numobs-2 , .  025) 
return scalar p2 = 2•ttail ($numobs-2 ,abs (rcturn(t 2 ) ) )  

Instead o f  computing the t statistic and p-value by hand, we could have used test, 
which would have computed an F statistic with the same p-value. We perform the 
computations manually for pedagogical purposes. The following output illustrates that 
test and the manual calculations yield the same p-value. 

set seed 10101 

quietly chi2data 



4.6.1 Simulation example: OLS witb x2 errors 

. return list 
scalars: 

r(p2) 
r (r2) 
r(t2) 

r(se2) 
r (b2) 

. quietly test x=2 

. return .list 
scalars: 

r(drop) 
r(df_r) 

r (F) 
r (df) 

r(p) 

. 0419507319188174 
1 .  
2 . 0 51809742705663 
.0774765767688598 
2 . 15896719504583 

0 
148 
4 . 2 09923220261881 

.0419507319188174 
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Below we use simulate to call chi2da ta $numsims times anci to store the results; 
here $numsims = 1000. The current dataset is replaced by one with the results from 
each simulation. These results can be displayed by using summarize, where obs in the 
output refers to the number of simulations and not the sample size in each simulation. 
The summarize outpc.t indicates that 1) the mean of the point estimates is very close 
to the true value of 2, 2) the standard deviation of the point estimates is close to the 
mean of the standard errors, and 3) the rejection rate of 0.046 is very close to the size 
of 0.05 . 

. • Simulation for finite-sample properties of OLS 

. simulate b2f=r(b2) se2f=r(se2) t2f=r(t2) reject2f=r(r2) p2f=r(p2) , 
> reps($numsims) saving(chi2datares,  replace) nolegend nodots: chi2data 

summarize b2f se2f rej ect2f 
Variable _ Obs Mean Std. Dev. Min Max 

b2f 
se2f 

reject2f 

.1000 
1000 
1000 

2 . 000502 
.0839736 

. 046 

. 0842622 1 . 719513 

.0 172607 . 0415919 

.2095899 0 

2 . 40565 
. 145264 

Below we use mean to obtain 95% confidence intervals for the simulation averages. 
The results for b2f and the rejection rate indicate that there is no significant bias and 
that the asymptotic distribution approximated the finite-sample distribution well for 
this DGP with samples of size 150. The confi.dence interval for the standard errors 
includes the sample standard deviation for b2f ,  which is another indication that the 
large-sample theory provides a good approximation to the finite-sample distribution. 

. mean b2f se2f reject2f 
Mean estimation Number of obs 1000 

b2f 
se2f 

reject2f 

Mean Std. Err. 

2 . 000502 . 0026646 
. 0839736 . 0005458 

. 04 6  .00 66278 

[95/. Conf . Interval) 

1 . 995273 
. 08;29025 

. 032994 

2. 005731 
. 0850448 

.059006 
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Further information on the distribution of the results can be obtained by using the 
summarize, detail and kdensi ty commands. 

4.6.2 Interpreting simulation output 

We consider in turn unbiasedness of {32 , correctness of the standard-error formula for 
sPz , distribution of the t statistic, and test size. 

Unbiasedness of estimator 

The average of 132 over the 1,000 estimates, 132 = (1/1000) I::�2 13" is the simulation 
estimate of E(132). Here 132 = 2 .001 (see the mean of b2f ) is very close to the DGP 
value {32 = 2.0, suggesting that the estimator is unbiased. However, this comparison 
should account for simulation error. F'rom the mean command, the simulation yields a 
95% confidence interval for E(132) of [1.995, 2.006]. This interval is quite narrow and 
includes 2.0 , so we conclude that E(132 ) is unbiased. 

Many estimators, particularly nonlinear estimators, are biased in finite samples. 
Then exercises such as this can be used to estimate the magnitude of the bias in typical 
sample sizes. If the estimator is consistent, then any bias should disappear as the sample 
size N goes to infinity. 

Standard errors 

The variance of 1J2 over the 1,000 estimates, s: (1/999) I;��1° (13. - /h)2 ,  is the liz 
simulation estimate of D"�- = Var(132) ,  the variance of 132 . Similarly, s _  = 0.084 (see the 

� � 

standard deviation of b2f ) is the simulation estimate of apz · Here se(132 ) = 0.084 (see 
the mean of se2f ) and the 95% confidence interval for se(132) is [0.083, 0.085]. Since this 
interval includes s .  = 0.084, there is no evidence that se({h) is biased for O";,_ ,  which 

� � 
means that the asymptotic distribution is approximating the finite-sample distribution 
well. 

In general, that {se(132 ) fl is unbiased for D"�z does not imply that upon taking the 
square root se(132) is unbiased for D"iJo . 

t statistic 

Because we impose looser restrictions on the DGP, t statistics are not exactly t dis­
tributed and z statistics are not exactly z distributed. However, the extent to which 
they diverge from the reference distribution disappears as the sample size increases. 
The output below generates the graph in figure 4.4, which compares the density of the 
t statistics with the t( 148) distribution. 



4.6.2 Interpreting simulation output 

kdensity t2f ,  n(1 000) gen(t2_x t2_d) nograph 
generate double t2_d2 = tden (148, t2_x) 

graph tYoYaY (line t2_d t2_x) (line t2_d2 t2_x) 

": · 

"! ·  

a 2 r(l2) 
1 -- donsly: r(l2) -- 12_o2 1 

4 

Figure 4.4. t statistic density against asymptotic distribution 
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Although the graph highlights some differences between the finite-sample and the asymp­
totic distributions, the divergence between the two does not appear to be great. Rather 
than focus on the distribution of the t statistics, we instead focus on the size of tests or 
coverage of confidence intervals based on these statistics. 

Test size 

The size of the test is the probability of rejecting H 0 when H 0 is true. Because the 
DGP sets (32 = 2, we consider a two-sided test of H o: (32 = 2 against Ha : (32 =I 2. The 
level or nominal size of the test is set to 0.05, and the t test is used. The proportion 
of simulations that lead to a rej�ction of H 0 is known as the rejection rate, and this 
proportion is the sirriulation estimate of the true test size. Here the estimated rejection 
rate is 0.046 (see the mean of reject2f) .  The associated 95% confidence interval (from 
mean reject2f) is [0.033, 0.059] , which is quite wide but includes 0.05. The width 
of this confidence interval is partially a result of having run only 1,000 repetitions, 
and partially an indication that, with 150 observations, the true size of the test can 
differ from the nominal size. When this simulation is rerun with 10,000 repetitions, the 
estimated rejection rate is 0.049 and the confidence interval is [0.044, 0.052]. 

The simulation results also include the variable p2f, which stores the p-values of 
each test. If the t(148) distribution is the correct distribution for the t test, then p2f 
should be uniformly distributed on (0 , 1 ) .  A histogram, not shown, reveals this to be 
the case. 



140 Chapter 4 Simulation 

More simulations are needed to accurately measure test size (and power) than are 
needed for bias and standard-error calculations. For a test with estimated size a based on 
S simulations, a 95% confidence interval for the true size is a ±  1 .96 x J a(l - a)/ S. For 
example, if a =  0.06 and S = 10,000 then the 95% confidence interval is [0.055, 0.065] .  
A more detailed Monte Carlo experiment for test size and power is given in section 12.6. 

Number of simulations 

Ideally, 10,000 simulations or more would be run in reported results, but this can be 
computationally expensive. vVith only 1,000 simulations, there can be considerable 
simulation noise, especially for estimates of test size (and power) .  

4.6.3 Variations 

The preceding code is easily adapted to other problems of interest. 

Different sample size and number of simulations 

Sample size can be changed by changing the global macro numobs. Many simulation 
studies focus on finite-sample deviations from asymptotic theory. For some estimators, 
most notably IV with weak instruments, such deviations can occur even with samples 
of many thousands of observations. 

Changing the global macro numsims can increase the number of simulations to yield 
more-precise simulation results. 

Test power 

The power of a test is the probability that it rejects a false null hypothesis. To simulate 
the power of a test, we estimate the rejection rate for a test against a false null hypoth­
esis. The larger the difference between the tested value and the true value, the greater 
the power and the rejection rate. The example below modifies chi2data to estimate 
the power of a test against the false null hypothesis that (32 = 2 . 1 .  

• Program f o r  finite-sample properties o f  OLS: 
program chi2datab , rclass 
1 .  version 10 . 1 
2 .  drop _all 
3 .  set obs $numobs 
4 .  generate double x = rchi 2(1)  

fixed regressors 

5. generate y = 1 + 2•x + rchi2(1 )-1  II demeaned chi -2 error 
6 .  
7 .  
8 .  
9 .  

10 .  
1 1 .  end 

regress y x 
return scalar b2 =_b[x] 
return scalar se2 =_se [x] 
test x�2 . 1  
return scalar r2 = (r (p )< .05)  
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Below we use simulate to run the simulation 1 , 0 00  times, and then we summarize the 
results. 

• PoYer simulation for finite-sample properties of OLS 
simulate b2f=r(b2) se2f=r(se2) reject2f=r (r2) , reps.(Snumsims) 

> saving(chi2databres ,  replace) nolegend nodots :  chi2datab 

. mean b2f se2f reject2f 
Mean estimation Number of obs 1000 

Mean Std . Err. [95/. Conf. Interval] 

b2f 2 . 001816 . 0026958 1 . 996526 2 . 007106 
se2f . 0836454 . 0005591 . 0825483 . 0847426 

reject2f .241  . 0135315 . 2 144465 . 2675535 

The sample mean of reject2f provides an estimate of the power. The estimated power 
is 0.241, which is not high. Increasing the sample size or the distance between the tested 
value and the true value will increase the power of the test. 

A useful way to incorporate power estimation is to define the hypothesized value of 
{32 to be an argumer:t of the progTam chi2datab. This is demonstrated in the more 
detailed l\Ionte Carlo experiment in section 12.6 . 

Different error distributions 

We can investigate the effect of using other error distributions by changing the dis­
tribution used in chi2da ta. For linear regression, the t statistic becomes closer to t 
distributed as the error distribution becomes closer to i . i .d. normal. For nonlinear mod­
els, the exact finite-sample distribution of estimator:; and test statistics is unknown even 
if the errors are i . i .d. normal. 

The example in section 4.6.2 used different draws of both regTessors and errors in 
each simulation. This corresponds to simple random sampling where we jointly sample 
the pair (y , x ) , especially relevant to survey data where individuals are sampled, and 
we use data (y ,x ) for the sampled individuals. An alternative approach is that of fixed 
regTessors in repeated trials, especially relevant to designed experiments. Then we draw 
a sample of x only once, and we use the same sample of x in each simulation while 
redrawing only the error u (and hence y). In that case, we create fixedx .dta, which 
has 150 observations on a variable, x, that is drawn from the x2(1) distribution, and 
we replace lines 2-4 of chi2data by typing use fixedx , clear. 

4.6.4 Estimator inconsistency 

Establishing estimator inconsistency requires less coding because we need to generate 
data and obtain estimates only once, with a large N, and then compare the estimates 
with the DGP values. 
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We do so for a classical errors-in-variables model of measurement error. Not only is 
it known that the OLS estimator is inconsistent, but in this case, the magnitude of the 
inconsistency is also known, so we have a benchmark for comparison. 

The DGP considered is 

y = (Jx* + u; x* � N(0 , 9 ) ;  u "' N(0 , 1 )  

x = x•  + v ;  v ,-.., N(O, 1) 

OLS regression of y on x* consistently estimates (3. However, only data on x rather 
than x• are available, so we instead obtain /3 from an OLS regression of y on x. It 
is a well-known result that then 7J is inconsistent, with a downward bias, s(J, where 
s = cr.�/(cr; + a·;. ) is the noise-signal ratio. For the DGP under consideration, this ratio 
is 1 / (1 + 9) = 0 .1 ,  :;o plim 'iJ = (3 - s(J = 1 - 0. 1  x 1 = 0.9. 

The following simulation checks this theoretical prediction, with sample size set to 
10, 000. We use drawnorm to jointly draw (x* ,  u, v), though we could have more simply 
made three separate standard normal draws. We set (3 = 1 .  

• Inconsistency o f  OLS �n errors-in-variables model (measurement error) 
clear 

quietly set obs 10000 
set seed 10101 
matrix mu � ( 0 , 0 , 0) 
matrix sigmasq � ( 9 , 0 ,0\0 , 1 , 0\0 , 0 , 1) 
dra�norm xstar u v ,  means(mu) cov(sigmasq) 

generate y � 1•xstar + u // DGP for y depends on xstar 
generate x � xstar + v // x is mismeasured xstar 

regress y x, noconstant 

Source ss df MS 

Model 31730 . 3312 81730.3312 
Residual 19127.893 9999 1 .  9 129806 

Total 100858. 224 10000 10 . 0858224 

y I Coef . Std. Err. t P> l t l  

X I . 9001733 . 004355 206.70 0 .  000 

Number of obs � 10000 
F(  1 ,  9999) �42724 .08 
Prob > F 0 . 0000 
R-squared 0 . 8103 
Adj R-squared � 0 . 8103 
Root MSE 1. 3831 

[95% Conf. Interval) 

.8916366 . 90871 

The OLS estimate is very precisely estimated, given the large sample size. The estimate 
of 0.9002 clearly differs from the DGP value of 1 .0 ,  so OLS is inconsistent. Furthermore, 
the simulation estimate essentially equals the theoretical value of 0.9. 

4.6.5 Simulation with endogenous regressors 

Endogeneity is one of the most frequent causes of estimator inconsistency. A simple 
method to generate an endogenous regressor is to first generate the error u and then 
generate the regressor x to be the sum of a multiple of u and an independent component. 



4.6.5 Simulation with endogenous regressors 

We adapt the previous DGP as follows: 

y = fJ1 + fJ2x + u; U "-' N(0, 1) ; 
x = z + 0 .5u; z ,...., N(O, 1) 

143 

We set fJ1 = 10 and fJ2 = 2. For this DGP, the correlation between x and u equals 0.5 . 
We let N = 150. 

The following program generates the data: 

• Endogenous regre�sor 
clear 

set seed 10101 
program endogreg, rclass 
1 .  version 1 0  . 1  
2 .  drop _a:.l 
3 .  set obs $numobs 
4 .  generate u = rnorma l(O) 

6 .  
7 .  

5 .  generate x = 0 . 5•u + rnorma l(O)  
generate y = 10 + 2•x + u 
regress y x 

8 .  
9 .  

return scalar b2 =_b [x] 
return scalar se2 = _se [x] 

II endogenous regressors 

10 .  return scalar t2 = (_b[x]-2)1_se [x] 
1 1 .  
12 .  
13 .  end 

return scalar r 2  = abs (return (t2)) >invttail ($numobs-2 , . 025) 
return scalar p2 = 2•ttail($numobs-2, abs (return(t2) ) )  

Below we run the simulations and summarize the results . 

. simulate b2r=r(b2) se2r=r(se2) t2r=r(t2) reject2r=r(r2) p2r=r (p2) , 
> reps($numsims) nolegend nodots : endogreg 

. mean b2r se2r reject2r 

Mean estimation Number of obs 1000 

Mean Std. Err. 

b2r - 2 .  399301 
se2r . 0658053 

reject2r 

.0020709 

.0001684 
0 

[95/. Conf. Interval] 

2 . 395237 
. 0654747 

2 . 403365 
. 0661358 

The results from these 1,000 repetitions indicate that for N = 150, the OLS estimator 
is biased by about 20%, the standard error is about 32 times too small, and we always 
reject the true null hypothesis that /32 = 2. 

By setting N large, we could also show that the OLS estimator is inconsistent with a 
single repetition. As a variation, we could instead estimate by IV, with z an instrument 
for x, and verify that the IV estimator is consiste�?-t· 
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4. 7 Stata resources 

The key reference for random-number functions is help functions. This covers most of 
the generators illustrated in this chapter and several other standard ones that have not 
been used. Note, however, that the rnbinomial (k ,p) function for making draws from 
the negative binomial distribution has a different parameterization from that used in this 
book. The key Stata commands for simulation are [Rj simulate and [P] postfile. The 
simulate command requires first collecting commands into a program; see [P] program. 

A standard book that presents algorithms for random-number generation is Press et 
al. (1992) .  Cameron and Trivedi (200,5) discuss random-number generation and present 
a Monte Carlo study; see also chapter 12 .7 . 

4.8 Exercises 

1. Using the normal generator, generate a random draw from a 50-50 scale mixture 
of N(l ,  1) and N ( 1 , 32) distributions. Repeat the exercise with the N(l,  32) com­
ponent replaced by N (3 ,  1 ) .  For both cases, display the features of the generated 
data by using a kernel density plot. 

2. Generate 1,000 observations from the F(5, 10) distribution. Use rchi20 to obtain 
draws from the x:2(5) and the x:2(10) distributions. Compare the sample moments 
with their theoretical count�rparts. 

3. Make 1,000 draws from the N(6, 22) distribution by making a transformation of 
draws from N(O, 1) and then making the transforma';ion Y = J1. + aZ. 

4. Generate 1,000 draws from the t(6) distribution, which has a mean of 0 and a 
variance of 4. Compare your results with those from exercise 3. 

5 .  Generate a large sample from the N(p. = l , a2 = 1 )  distribution and estimate 
a/Jl., the coefficient of variation. Verify that the sample estimate is a consistent 
estimate. 

6. Generate a draw from a multivariate normal distribution, N(J.L, :E = LL') ,  with 
f.L1 = [0 0 OJ and 

� � l , or 
:E 

= [ � � � l V3 v'6  0 3 9  

using transformations based on this Cholesky decomposition. Compare your re­
sults with those based on using the drawnorm command. 

7. Let s denote the sample estimate of a and x denote the sample estimate of p.. The 
coefficient of variation ( cv) a//.!, which is the ratio of the standard deviation to 
the mean, is a dimensionless measure of dispersion. The asymptotic distribution 
of the sample cv sjx is N[ajp,, (N - 2)-112 (a/Jl. f {0 .5 + (a/p,)2}] ;  see Miller 
( 1991) .  For N = 25 .. using either simulate or postfile, compare the Monte 
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Carlo and asymptotic variance of the sample cv with the following specification 
of the DGP: x "' N(J.L, cr2) with three different values of cv = 0 . 1 ,  0.33, and 0.67. 

8. It is suspected that making draws from the truncated normal using the method 
given in section 4.4.4 may not work well when sampling from the extreme tails of 
the normal. Using different truncation points, check this suggestion. 

9. Repeat the example of section 4.6.1 ( OLS with x2 errors) ,  now using the postfile 
command. Use postfile to save the estimated slope coefficient, standard error, 
the t statistic for H0: (3 = 2, and an indicator for whether H 0 is rejected at 0.05 
level in a Stata file named simresul ts. The template program is as follows: 

• Postfile and post example: repeat OLS Yith chi-squared errors example 
clear 
set seed 10101 
program simbypost 

version 10 . 1  
tempname simfile 
postfile ' simfile"  b2 se2 t2 reject2 p2 using simresults, replace 
quietly { 

forvalues i = 1/$numsims { 
drop _all 

} 
} 

set obs $numobs 
generate x = rchi2(1)  
generate y = 1 + 2•x  + rchi2 (1 )  - 1 // demeaned chi -2 error 
regress y x 
scalar b2 �_b [x] 
sea lar se2 = _se [x] 
scalar t2 = (_b [x] -2)/_se [x] 
scalar reject2 = abs(t2) > invttail ($numobs-2 , . 025) 
scalar p2 = 2•ttail($numobs-2 ,abs(t2)) 
post 'simfile"  (b2) (se2) (t2)  (reject2) (p2) 

postclose ' simf ile"  
end 
simbypost 
use simresult s ,  clear 
summarize 


