3 Linear regression basics

3.1 introduction

Linear regression analysis is often the starting point of an empirical investigation. Be-
cause of its relative simplicity, it is useful for illustrating the different steps of a typical
modeling cycle that involves an initial specification of the model followed by estimation,
diagnostic checks, and model respecification. The purpose of such a linear regression
analysis may be to summarize the data, generate conditional predictions, or test and
evaluate the role of specific regressors. We will illustrate these aspects using a specific
data example.

This chapter is limited to basic regression analysis on cross-section data of a contin-
uous dependent variable. The setup is for a single equation and exogenous regressors.
Some standard complications of linear regression, such as misspecification of the condi-
tional mean and model errors that are heteroskedastic, will be considered. In particular,
we model the natural logarithm of medical expenditures instead of the level We will
ignore other various aspects of the data that can lead to more sophisticated nonlinear
models presented in later chapters.

3.2 Data and data summary

The first step is to decide what dataset will be used. In turn, this decision depends on
the population of interest and the research question itself. We discussed how to convert
a raw dataset to a form amenaole to regression analysis in chapter 2. In this section.
we present ways to summarize and gain some understanding of the data, a necessary
step before any regression analysis.

3.2.1 Data description

We analyze medical expenditures of individuals 65 years and older who qualify for
health care under the U.S. Medicare program. The original data source is the Medical
Expenditure Panel Survey (MEPS).

Medicare does not cover all medical expenses. For example, copayments for medical
services and expenses of prescribed pharmaceutical drugs were not covered for the time
period studied here. About half of eligible individuals therefore purchase supplementary
insurance in the private market that provides insurance coverage against various out-
of-pocket expenses. :
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In this chapter, we consider the impact of this supplementary insurance on total an-
medical expenditures of an individual, measured in dollars. A formal investigation
must conditol for the influence of other factors that also determine individual medical
expenditure, notably, sociodemographic factors such as age, gender, education and in-
come, geographical location, and health-status measures such as self-assessed health
presence of chronic or limiting conditions. In this chapter, as in other chapters,
insterd deliberately use a short list of regressors. This permits shorter output and
simplemdiscussion of the results, an advantage because our intention is to simply explain

methods and tools available in Stata. -

the

Variable description

Given the Stata dataset for analysis, we begin by using the describe command to list
various features of the variables to be used in the linear regression. The command with-
a variable list describes all the variables in the dataset. Here we restrict attention

the watiables used in this chapter.

to
. * Variable description for medical expenditure dataset
. use musO3data.dta

. describe totexp ltotexp posexp suppins phylim actlim totchr age female income

storage display value
variable name type format label variable label
totexp double %412.0g Total medical expenditure
ltotexp float 49.0g 1n(totexp) if totexp > 0
posexp float 49.0g =1 if total expenditure > O
suppins float 49.0g =1 if has supp priv insurance
phylim double 412.0g =1 if has functional limitation
actlim double 412.0g =1 if has activity limitation
totchr double %412.0g # of chronic problems
age double %12.0g Age
female double 412.0g =1 if female
income double %412.0g annual household income/1000

variable types and format columns indicate that all the data are numeric. In this
case, sFhe variables are stored in single precision (f1loat) and some in double precision
ble). From the variable labels, we expect totexp to be nonnegative; 1totexp to
miséingn if totexp equals zero; posexp, suppins, phylim, actlim, and female to
0 obé; totchr to be a nonnegative integer; age to be positive; and income to be
negativeeor positive. Note that the integer variables could have been stored much more
compactly as integer or byte. The variable labels provide a short description that is
helpful but may not fully describe the variable. For example, the key regressor suppins
created by aggregating across several types of private supplementary insurance. No
labels feaghe values taken by the categorical variables have been provided.
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3.2.3 Summary statistics

It is essential in any data analysis to first check the data by using the summarize
command,

. * Summary stat:istics for medical expenditure dataset
. summarize totexp ltotexp posexp suppins phylim actlim totchr age female income

Variable Obs Mean Std. Dev. Min Max
totexp ‘3064 7030.889 11852.75 0 125610
ltotexp 2955 8.059866 1.367592 1.098612 11.74094
posexp 3064 .9644256 .1852568 0 1
suppins 3064 .5812663 .4934321 0 1
phylim 3064 .4255875 .4945125 0 1
actlim 3064 .2836162 .4508263 0 1
totchr 3064 1.754243 1.307197 0 7
age 3064 74.17167 6.372938 65 90
female 3064 .5796345 .4936982 0 1
income 3064 22.47472 22.53491 -1 312.46

On average, 96% of individuals incur medical expenditures during a year; 58% have
supplementary insurance; 43% have functional limitations; 28% have activity limita-
tions; and 58% are female, as the elderly population is disproportionately female be-
cause of the greater longevity of women. The only variable to have missing data is
ltotexp, the natural logarithm of totexp, which is missing for the (3064 — 2955) = 109
observations with totexp = 0.

All variables have the expected range, except that income is negative. To see how
many observations on income are negative, we use the tabulate commniand, restricting
attention to nonpositive observations to limit output.

. * Tabulate variable
. tabulate income if income <= 0

annual
household
income/1000 | Freq. Percent Cum.
-1 1 1.14 1.14
0 87 98.86 100.00
Total 88 100.00

Only one observation is negative, and negative income is possible for income from self-
employment or investment. We include the observation in the analysis here, though
checking the original data source may be warranted.

Much of the subsequent regression analysis will drop the 109 observations with zero
medical expenditures, so in a research paper, i_t would be best to report summary
statistics without these observations.



74 Chapter 3 Linear regression basics

3.2.4 More-detailed summary statistics

Additional descriptive analysis of key variables, especially the dependent variable, is
useful. For totexp, the level of medical expenditures, summarize, detail yields

* Detailed summary statistics of a single variable
sumhbarize totexp, detail

Total medical expenditure

Percentiles Smallest

14 0 0

LY 112 0
10%4 393 0 Obs 3064
25% 1271 0 Sum of Wgt. 3064
50% 3134.5 Mean 7030.889
Largest Std. Dev. 11852.75

75% 7151 104823
90% 17050 108256 Variance 1.40e+08
95% 27367 123611 Skewness 4.165058
99% 62346 125610 Kurtosis 26.26796

Medical expenditures vary greatly across individuals, with a standard deviation of
11,853, which is almost twice the mean. The median of 3,134 is much smaller than
the mean of 7,031, reflecting the skewness of the data. For variable z, the skewness
statistic is a scale-free measure of skewness that estimates E{(z — u)*}/0®/?, the third
central moment standardized by the second central moment. The skewness is zero for
symmetrically distributed data. The value here of 4.16 indicates considerable right
skewness. The kurtosis statistic is an estimate of E{(z — p)*}/o*, the fourth central
moment standardized by the second central moment. The reference value is 3, the value
for normally distributed data. The much higher value here of 26.26 indicates that the
tails are much thicker than those of a normal distribution. You can obtain additional
summary statistics by using the centile command to obtain other percentiles and by
using the table command, which is explained in section 3.2.5.

We conclude that the distribution of the dependent variable is considerably skewed
and has thick tails. These complications often arise for commonly studied individual-
level economic variables such as expenditures, income, earnings, wages, and house prices.
It is possible that including regressors will eliminate the skewness, but in practice, much
of the variation in the data will be left unexplained (R? < 0.3 is common for individual-
level data) and skewness and excess kurtosis will remain.

Such skewed, thick-tailed data suggest a model with multiplicative errors instead of
additive errors. A standard solution is to transform the dependent variable by taking
the natural logarithm. Here this is complicated by the presence of 109 zero-valued
observations. We take the expedient approach of dropping tne zero observations from
analysis in either logs or levels. This should make little difference here because only
3.6% of the sample is then dropped. A better approach, using two-part or selection
models, is covered in chapter 16.

The output for tabstat in section 3.2.5 reveals that taking the natural logarithm
for these data essentially eliminates the skewness and excess kurtosis.



3.2.5 Tables for data 75

The user-written fsum command (Wolfe 2002) is an enhancement of summarize that
enables formatting the output and including additional information such as percentiles
and variable labels. The user-written outsum command (Papps 2006) produces a text
file of means and standard deviations for one or more subsets of the data, e.g., one
column for the full sample, one for a male subsample, and one for a female subsample.

3.2.5 Tables for data

One-way tables can be created by using the table command, which produces just
frequencies, or the tabulate command, which additionally produces percentages and
cumulative percentages; an example was given in section 3.2.3.

Two-way tables can also be created by using these commands. For frequencies, only
table produces clean output. For example,

*» Two-way table of frequencies
table female totchr

=1 if # of chronic problems
femald 0 1 2 3 4 S 6 7
0 239 415 323 201 82 23 4 1
1 313 466 493 305 140 46 11 2

provides frequencies for a two-way tabulation of gender against the number of chronic
conditions. The tabulate command is much richer. For example,

* Two-way table with row and column percentages and Pearson chi-squared
tabulate female suppins, row col chi2

Key

frequency
row percenta
column percen%ge

=1 if has supp priv

=1| if insurance
fegale 0 ! : Total
0 288 800 1,288
37.89 62.11 100.00
38.04 44.92 42.04
795 981 1,776
1 44.76 54.24 100.00
61.96 s9.08 57.96
Tdtal 1,283 1,781 3,064
41.87 54.13 100.00,
100.00 109.00 100.00

Pearson chi2(1) = 14.4991 Pr = 0.000
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Comparing the row percentages for this sample, we see that while a woman is more
likely to have supplemental insurance than not, the probability that a woman in this
sample has purchased supplemental insurance is lower than the probability that a man
in this sample has purchased supplemental insurance. Although we do not have the
information to draw these inferences for the population, the results for Pearson’s chi-
squared test soundly reject the null hypothesis that these variables are independent.
Other tests of association are available. The related command tab2 will produce all
possible two-way tables that can be obtained from a list of several variables.

For multiway tables, it is best to use table. For the example at hand, we have

. * Three-way table of frequencies
. table female totchr suppins

=1 if bas supp priv insurance and # of chromnic
problems
=1 if 0
female 0 1 2 3 4 S 6 7
0 102 165 121 68 25 6 1
1 135 212 233 134 56 22 1 2
#1 if has supp priv insurance and # of chronic
problems
=1 if 1
female 0 1 2 3 4 S 6 7
0 137 250 202 133 57 17 3 1

1 178 254 260 171 84 24 10

An alternative is to use tabulate with the by prefix, but the results are not as neat as
those from table.

The preceding tabulations will produce voluminous output if one of the variables
being tabulated takes on many values. Then it is much better to use table with the
contents() option to present tables that give key summary statistics for that variable,
such as the mean and standard deviation. Such tabulations can be useful even when
variables take on few values. For example, when summarizing the number of chronic
problems by gender, table yields

* One-way table of summary statistics
. table female, contents(N totchr mean totchr sd totchr p50 totchr)

=1 if
female N(totchr) mean(totchr) sd(totchr)  med(totchr)

0 1,288 1.659937888 1.261175 1
1,776 1.822635135 1.335776 2
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Women on average have more chronic problems (1.82 versus 1.66 for men). The option
contents() can produce many other statistics, including the minimum, maximum, and
key percentiles.

The table command with the contents() option can additionally produce two-way
and multiway tables of summary statistics. As an example,

* Two-way table of summary statistics
table female suppins, contents(N totchr mean totchr)

=1 if has supp priv
=1 if insurance
femald 0 1
0 488 800
1.530737705 1.73875
1 795 981
1.803773585 1.837920489

shows that those with supplementary insurance on average have more chronic problems.
This is especially so for males (1.74 versus 1.53).

The tabulate, summarize() command can be used to produce one-way and two-
way tables with means, standard deviations, and frequencies. This is a small subset of
the statistics that can be produced using table, so we might as well use table.

The tabstat command provides a table of summary statistics that permits more
flexibility than summarize. The following output presents summary statistics on medical
expenditures and the natural logarithm of expenditures that are useful in determining
skewness and kurtosis.

. * Summary statistics obtained using command tabstat
. tabstat totexp ltotexp, stat (count mean p50 sd skew kurt) col(stat)

variable N mean pSO sd skewness kurtosis
tofexp 3064 7030.889 3134.5 11852.75 4.165058 26.26796
ltotjexp 2955 8.059866 8.111928 1.367592 -.3857887 3.842263

This reproduces infor:nation given in section 3.2.4 and shows that taking the natural
logarithm eliminates most skewness and kurtosis. The col(stat) option presents the
results with summary statistics given in the columns and each variable being given in
a separate row. Without this option, we would have summary statistics in rows and
variables in the columns. A two-way table of summary statistics can be obtained by
using the by() option.

(Continued on next page)
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3.2.6 Statistical tests

The ttest command can be used to test hypotheses about the population mean of a
single variable (Hg: ¢ = p* for specifed value (¢*) and to test the equality of means
(Ho: m = pg). For more general analysis of variance and analysis of covariance, the
oneway and anova commands can be used, and several other tests exist for more special-
ized examples such as testing the equality of proportions. These commands are rarely
used in microeconometrics because they can be recast as a special case of regression
with an intercept and appropriate indicator variables. Furthermore, regression has the
advantage of reliance on less restrictive distributional assumptions, provided samples
are large enough for asymptotic theory to provide a good approximation.

For example, consider testing the equality of mean medical expenditures for those
with and without supplementary health insurance. The ttest totexp, by(suppins)
unequal command performs the test but makes the restrictive assumption of a com-
mon variance for all those with suppins=0 and a (possibly different) common variance
for all those with suppins=1. An alternative method is to perform ordinary least-
squares (OLS) regression of totexp on an intercept and suppins and then test whether
suppins has coefficient zero. Using this latter method, we can permit. all observations
to have a different variance by using the vce(robust) option for regress to obtain
heteroskedastic-consistent standard errors; see section 3.3.4.

3.2.7 Data plots

It is useful to plot a histogram or a density estimate of the dependent variable. Here
we use the kdensity command, which provides a kernel estimate of the density.

The data are highly skewed, with a 97th percentile of approximately $40,000 and a
maximum of $1,000,000. The kdensity totexp command will therefore bunch 97% of
the density in the first 4% of the z axis. One possibility is to type kdensity totexp
if totexp < 40000, but this produces a kernel density estimate assuming the data
are truncated at $40,000. Instead, we use command kdensity totexp, we save the
evaluation points in kx1 and the kernel density estimates in kdl, and then we line-plot
kdl against kx1.

We do this for both the level and the natural logarithm of medical expenditures, and

we use graph combine to produce a figure that includes both density graphs (shown in
figure 3.1). We have

* Kernel density plots with adjustment for highly skewed data
kdensity totexp if posexp==1, genmerate (kx1 kd1) n(S00)

graph. twoway (line kdl kx1) if kxl1 < 40000, name(levels)
kdensity ltotexp if posexp==1, generate (kx2 kd2) n(500)
graph. twoway (line kd2 kx2) if kx2 < 1n(40000), name(logs)
graph. combine levels logs, iscale(1.0)
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Figure 3.1. Comparison of densities of level and natural logarithm of medical expendi-
tures

Only positive experditures are considered, and for graph readahility, the very long
right tail of totexp has been truncated at $40,000. In figure 3.1, the distribution of
totexp is very right-skewed, whereas that of 1totexp is fairly symmetric.

3.3 Regression in levels and logs

We present the linear regression model, first in levels and then for a transformed de-
pendent variable, here in logs.

3.3.1 Basic regression theory

We begin by introducing terminology used throughout the rest of this book. Let 6
denote the vector of parameters to be estimated, and let 6 denote an estimator of 6.
Ideally, the distribution of 0 is centered on @ with small variance, for precision, and a
known distribution, to permit statistical inference. We restrict analysis to estimators
that are consistent for 6, meaning that in infinitely large samples, 6 equals 0 aside
from negligible random variation. This is denoted by 8 2 0 or more formally by G
6o, where 6o denotes the unknown “true” parameter value. A necessary condition for
consistency is correct model specification or, in some leading cases, correct specification
of key components of the model, most notably the conditional mean.
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Under additional assumptions, the estimators considered in this book are asymptot-
ically normally distributed, meaning that their distribution is well approximated by the
multivariate normal in large samples. This is denoted by

6 2 N{6, Var(8)}
where Var(6) denotes the (asymptotic) variance-covariance matrix of the estimator
(VCE). More efficient estimators have smaller VCEs. The VCE depends on unknown
parameters, so we use an estimate of the VCE, denoted by 17(5). Standard errors of the
parameter estimates are obtained as the square root of diagonal entries in 17(5) Differ-
ent assumptions about the data-generating process (DGP), such as heteroskedasticity,
can lead to different estimates of the VCE.

Test statistics based on asymptotic normal results lead to the use of the standard
normal distribution and chi-squared distribution to compute critical values and p-values.
For some estimators, notably, the OLS estimator, tests are instead based on the t dis-
tribution and the F distribution. This makes essentially no difference in large samples
with, say, degrees of freedom greater than 100, but it may provide a better approxima-
tion in smaller samples.

3.3.2 OLS regression and matrix algebra

The goal of linear regression is to estimate the parameters of the linear conditional mean
E(ylx) = x'8 = fiz1 +Poza+ - + Orzx (3.1)

where usually an intercept is included so that x; = 1. Here x is a A’ x 1 column vector
with the jth entry—the jth regressor 2;,—and 8 is a X x 1 column vector with the jth
entry (;.

Sometimes E(y|x) is of direct interest for prediction. More often, however, econo-
metrics studies are interested in one or more of the associated marginal effects (MEs),
OE(ylx) _ 3,

ij J
for the jth regressor. For example, we are interested in the marginal effect of supple-
mentary private health insurance on medical expenditw-es. An attraction of the linear
model is that estimated MEs are given directly by estimates of the slope coefficients.

The linear regression model specifies an additive error so that, for the typical ith
observation,
¥ =%XB+ u; i=1,...,N

The OLS estimator minimizes the sum of squared errors, Z,ﬂ;l(% - x/8)*

Matrix notation provides a compact way to represent the estimator and variance
matrix formulas that involve sums of products and cross products. We define the V x 1
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coluinn vector y to nave theith entry y;, and we define the N x K regressor matrix X
to have the ith row x;. Then the OLS estimator can be written in several ways, with

B= (XX Xy

N A"
E L KiX E XY
qe ] =1

Y 2 N N 4 =1
Z-iﬂ Ty, Zvﬁ:l X1iT2e 7 2»5_:1 TR Zf"zl Tl
N N 2 : N s
B D IARE SV VR PARE. ‘ Eim B2iYs
. N
N N ) .
2:‘=1 TRiT1a et Zi:l Trs o Zl:l LK Y

We define all vectors as column vectors, with a transpose if row vectors are desired.
By contrast, Stata commands and Mata commands define vectors as row vectors, so in
parts of Stata and Mata code, we need to take a transpose to conform to the notation
in the book.

3.3.3 Properties of the OLS estimator

The properties of any estimator vary with the assumptions made about the DGp. For
the linear regression model, this reduces to assumptions about the regression error u..

The starting point for analysis is to assume that u, satisfies the following classical
conditions:

1. E(u,|x;) = O (exogeneity of regressors)
2. E(u?x;) = 02 (conditional homoskedasticity)

3. B(uiuj|x;.x;) = 0, i # j, (conditionally uncorrelated observations)

Assumption 1 is essential for consistent estimation of 8 and implies that the condi-
tional mean given in (3.1) is correctly specified. This means that the conditional mean is
linear and that all relevant variables have been included in the regression. Assumption 1
is relaxed in chapter 6.

_ Assumptions 2 and :3 determine the form of the VCE of EJ Assumptions 1-3 lead to
B being asymptotically normally distributed with the default estimator of the VCE

";dcfanlt(:’é) = SQ(XlX) -1
where

= (N=R)TDY A7 (3.2)

and T; =y; — xﬁB Under assumptions 1-3, the OLS estimator is fully efficient. If,
additionally, u, is normally distributed, then “t statistics” are exactly t distributed. This
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fourth assumption is not made, but it is common to continue to use the ¢ distribution
in the hope that it provides a better approximation than the standard normal in finite
samples.

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter 5,
we present examples of more-efficient feasible generalized least-squares (FGLS) estima-
tion. In the current chapter, we continue to use the OLS estimator, as is often done in
practice, but we use alternative estimates of the VCE that are valid when assumption
2, assumption 3, or both are relaxed.

3.3.4 Heteroskedasticity-robust standard errors

Given assumptions 1 and 3, but not 2, we have heteroskedastic uncorrelated errors.
Then a robust estimator, or more precisely a heteroskedasticity-robust estimator, of the
VCE of the OLS estimator is

Voot (B) = (/%) 7 (7 52, ) (x13) (3:3)

For cross-section data that are independent, this estimator, introduced by White (1980),
has supplanted the default variance matrix estimate in most applied work because het-
eroskedasticity is the norm, and in that case, the default estimate of the VCE is incorrect.

In Stata, a robust estimate of the VCE is obtained by nsing the vce (robust) option
of the regress command, as illustrated in section 3.4.2. Related options are vce (hc2)
and vce(hc3), which may provide better heteroskedasticity-robust estimates of the VCE
when thesamplesize is small; see [R] regress. The robust estimator of the VCE has been
extended to other estimators and models,and a feature of Stata is the vce (robust) op-
tion, which is applicable for many estimation commands. Some user-written commands
use robust in place of vce(robust).

3.3.5 Cluster—rgbust standard errors

When errors for different observations are correlated, assumption :3 is violated. Then
both default and robust estimates of the VCE are invalid. For time-series data, this is
the case if errors are serially correlated, and the newey command should be used. For
cross-section data, this can arise when errors are clustered.

Clustered or grouped errors are errors that are correlated within a cluster or group
and are uncorrelated across clusters. A simple example of clustering arises when sam-
pling is of independent units but errors for individuals within the unit are correlated.
For example, 100 independent villages may be sampled, wita several people from each
village surveyed. Then, if a regression model overpredicts ¥ for one village member,
it is likely to overpredict for other members of the same village, indicating positive
correlation. Similar comments apply when sampling is of households with several indi-
viduals in each household. Another leading example is panel data with independence
over individuals but with correlation over time for a given individual.
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Given assumption 1, but not 2 or 3, a cluster-robust estimator of the VCE of the
OLS estimator is

5 = - G N -1 o _
Vclustcr (ﬁ% (er) 1 (G——].]VT g;ﬂ,l,lléXQ) (X'X) 1

where g = 1,...,G denotes the cluster (such as village), U, is the vector of residuals
for the observations in the gth cluster, and X, is a matrix of the regressors for the
observations ‘in the gth cluster. The key assumptions made are error independence
across clusters and that the number of clusters G — oa.

Cluster-robust standard errors can be computed by using the vce(cluster clust-
var) option in Stata, where clusters are defined by the different values taken by the
clustvar variable. The estimate of the VCE is in fact heteroskedasticity-robust and
cluster-robust, because there is no restriction on Cov(ug;,%;). . The cluster VCE esti-
mate can be applied to many estimators and models; see section 9.6.

Cluster—robust standard errors must be used when data are clustered. For a scalar
regressor z, a rule of thumb is that cluster-robust standard errorsare /1 + p.p, (A — 1)
times the incorrect. default standard errors, where p. is the within-cluster correlation
coefficient of the regressor, p, is the within-cluster correlation coefficient of the error,
and N/ is the average cluster size.

It can be necessary to use cluster-robust standard errors even where it is not im-
mediately obvious. This is particularly the case when a regressor is an aggregated or
macro variable, because then p, = 1. For example, suppose we use data from the U.S.
Current Population Survey and regress individual earnings on individual characteristics
and a state-level regressor that does not vary within a state. Then, if there are many
individuals in each state so M is large, even slight error correlation for individuals
in the same state can lead to great downward bias in default standard errors and in
heteroskedasticity-robust standard errors. Clustering can also be induced by the design
of sample surveys. This topic is pursued in section 5.5.

3.3.6 Regression in logs

The medical expenditure data are very right-skewed. Then a linear model in levels can
provide very poor predictions because it restricts the effects of regressors to be additive.
For example, aging 10 years is assumed to increase medical expenditures by the same
amount regardless of observed health status. Instead, it is more reasonable to assume
that aging 10 years has a multiplicative effect. For example, it may increase medical
expenditures by 20%.

We begin with an exponential mean model for positive expenditures, with error
that is also multiplicative, so y, = exp(x;B)s;. Defining €; = exp(u:), we havey,
exp(xiB +u;), and taking the natural logarithm, we fit the log-linear model

ny, =xiB + u;
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by OLS regression of Iny on x. The conditional mean of lny is being modeled, rather
than the conditional mean of y. In particular,

B(lnylx) =x'8

assuming v, is independent with conditional mean zero.

Parameter interpretation requires care. For regression of Iny on x, the coeflicient j3;
measures the effect of a change in regressor r; on E(Iny|x), but ultimate interest lies
instead on the effect on E(y|x). Some algebra shows that §; measures the proportionate
change in E(y|x) as z; changes, called a semielasticity, rather than the level of change
in E(y|x). For example, if 3; = 0.02, then a one-unit change in ; is associated with a
proportionate increase of 0.02, or 2%, in E(y|x).

Prediction of B(y|x) is substantially more difficult because it can be shown that
E(Iny|x) # exp(x’B). This is pursued in section 3.6.3.

3.4 Basic regression analysis

We use regress to run an OLS regression of the natural logarithm of medical expendi-
tures, 1totexp, on suppins and several demographic and health-status measures. Using
Iny rather than y as the dependent variableleads to no changein the implementation of
OLS but, as already noted, will change the interpretation of coefficients and predictions.

Many of the details we provide in this section are applicable to all Stata estimation
commands, not just to regress.

3.4.1 Correlations

Before regression, it can be useful to investigate pairwise correlations of the dependent
variables and key regressor variables by using correlate. We have

* Pairwise correlations for dependent variable and regressor variables
. correlate ltotexp suppins phylim actlim totchr age female income

(obs=2955)

ltotexp suppins phylim actlim  totchr age

ltotexp 1.0000

suppins 0.0941  1.0000

phylim 0.2924 -0.0243 1.0000

actlim 0.2888 -0.0675 0.5804 1.0000

totchr 0.4283 0.0124 0.333¢ 0.3260 1.0000

age 0.0858 -0.1226 0.2538 0.2394 0.0904 1.0000

female -0.0058 -0.0796 0.0943 0.0499 0.0557 0.0774

0.

income 0023 0.1943 -0.1142 -0.1483 -0.0816 -0.1542

female income

female 1.0000
income -0.1312  1.0000
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Medical expenditures are most highly correlated with the health-status measures phylim,
actlim, and totchr. The regressors are only weakly correlated with each other, aside
from the health-status measures. Note that correlate restricts analysis to the 2,955
observations where data are available for all variables in the variable list. The related
command pwcorr, not demonstrated, with the sig option gives the statistical signifi-
cance of the correlations.

3.4.2 The regress command

The regress command performs OLS regression and yields an analysis-of-variance table,
goodness-of-fit statistics, coefficient estimates, standard errors, ¢ statistics, p-values, and
confidence intervals. The syntax of the command is

regress depvar [z’ndep'vars} [zf} [m] [weight] [, optionsJ

Other Stata estimation commands have similar syntaxes. The output from regress
is similar to that from many linear regression packages.

For independent cross-section data, the standard approach is to use the vce (robust)
option, which gives standard errors that are valid even if model errors are heteroskedas-
tic; see section 3.3.4. In that case, the analysis-of-variance table, based on the assump-
tion of homoskedasticity, is dropped from the output. We obtain

. * OLS regression with heteroskedasticity-robust standard errors
. regress ltotexp suppins phylim actlim totchr age female income, vce(robust)

Linear regression Number of obs = 2955
F( 7, 2947) = 126.97
Prob > F = 0.0000
R-squared = 0.2289
Root MSE = 1.2023

Robust
ltotexp Coef. Std. Err. t P>lt| [957. Conf. Intervall
suppins -+  .2556428  .0465982 5.49 0.000 .1642744 3470112
phylim .3020598 .057705 5.23 0.000 . 1889136 415206
actlim .3560054 .0634066 5.61 0.000 .2316797 4803311
totchr .3758201  .0187185 20.08 0.000 .3391175 .4125228
age .0038016  .0037028 1.03 0.305 ~.0034587 .011062
female -.0843275 . 045654 -1.85 0.065 -.1738444 .0051894
income .0025498  .0010468 2.44 0.015 .0004973 .0046023
cons 6.703737  .2825751 23.72 0.000 6.149673 7.257802

The regressors are jointly statistically significant, because the overall F' statistic of
126.97 has a p-value of 0.000. At the same time, much of the variation is unexplained
with R? = 0.2289. The root MSE statistic reports s, the standard error of the regression,
defined in (3.2). By using a two-sided test at level 0.0.5, all regressors are individually
statistically significant because p < 0.05, aside from age and female. The strong
statistical insigmificance of age may be due to sample restriction to elderly people and
the inclusion of several health-status measures that capture well the health effect of age.
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Statistical significance of coefficients is easily established. More important is the eco-
nomic significance of coefficients, meaning the measured impact of regressors on medical
expenditures. This is straightforward for regression in levels, because we can directly
use the estimated coefficients. But here the regression is in logs. From section 3.3.6, in
thelog-linear model, parameters need to be interpreted as semielasticities. For example,
the coefficient on suppins is 0.256. This means that private supplementary insurance
is associated with a 0.256 proportionate rise, or a 25.6% rise, in medical expenditures.
Similarly, large effects are obtained for the health-status measures, whereas health ex-
penditures for women are 8.4% lower than those for men after controlling for other
characteristics. The income coefficient of 0.0025 suggests a very small effect, but this
is misleading. The standard deviation of income is 22, so a 1-standard deviation in
income leads to a 0.055 proportionate rise, or 5.5% rise, in medical expenditures.

MEs in nonlinear models are discussed in more detail in section 10.6. The preceding
interpretations are based on calculus methods that consider very small changes in the
regressor. For larger changes in the regressor, the finite-difference method is more
appropriate. Then the interpretation in the log-linear model is similar to that for the
exponential conditional mean model; see section 10.6.4. For example, the estimated
effect of going from no supplementary insurance (suppins=0) to having supplementary
insurance (suppins=1) is more precisely a 100 x (e%%%¢ — 1), or 29.2%, rise.

The regress command provides additional results that are not listed. In particular,
the estimate of the VCE is stored in the matrix e (V). Ways to access this and other
stored results from regression have been given in section 1.6. Various postestimation
commands enable prediction, computation of residuals, hypothesis testing, and model
specification tests. Many of these are illustrated in subsequent sections. Two useful
commands are

. * Display stored results and list available postestimation commands
. ereturn list

(output omitted )
. help regress postestimation
(output omrtted)

3.4.3 Hypothesis tests

The test command performs hypothesis tests using the Wald test procedure that uses
the estimated model coefficients and VCE. We present some leading examples here, with
a more extensive discussion deferred to section 12.3. The F statistic version of the Wald
test is used after regress, whereas for many other estimators the chi-squared version
is instead used.

A common test is one of equality of coefficients. For example, consider testing that
having a functional limitation has the same impact on medical expenditures as having
an activity limitation. The test of Hp: Ophy1in = Bacelin 382INSt Ha® Ppryriz 7 Bacerin 1S
implemented as
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* Wald test of equality of coefficients

quietly regress ltotexp suppins phylim actlim totchr age female
> income, vce(robust)

test phylim = actlim
( 1) phylim - actlim = 0
F( 1, 2947)
Prob > F

0.27
0.6054

Because p = 0.61 > 0.05, we do not reject the null hypothesis at the 5% significance
level. There is no statistically significant difference between the coefficients of the two
variables.

The model can also be fitted subject to constraints. For example, to obtain the
least-squares estimates subject to Bpnyiin = Bactiim; We define the constraint using
constraint define and then fit the model using cnsreg for constrained regression
with the constraints() option. See exercise 2 at the end of this chapter for an exam-
ple.

Another common test is one of the joint statistical significance of a subset of the
regressors. A test of the joint significance of the health-status measures is one of Hp:
Bonyrin = 0, Facerin = 0, Brorcr = 0 against H,: at least one is nonzero. This is
implemented as

. * Joint test of statistical significance of several variables
. test phylim actlim totchr

(1) phylim = 0
(2) actlim =0
( 3) totchr =0
F( 3, 2947) = 272.36
Prob > F = 0.0000

These three variables are jointly statistically significant at the 0.0.5 level because p =
0.000 < 0.05.

3.4.4 Tables of cutput from several regressions

It is very useful to be able to tabulate key results from multiple regressions for both
one’s own analysis and final report writing,

The estimates store command after regression leads to results in e () being as-
sociated with a user-provided model name and preserved even if subsequent models
are fitted. Given one or more such sets of stored estimates, estimates table presents
a table of regression coefficients (the default) and, optionally, additional results. The
estimates stats command lists the sample size and several likelihood-based statistics.

We compare the original regression model with.a variant that replaces income with
educyr. The example usesseveral of the available options for estimates table.
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. * Store and then tabulate results from multiple regressions

. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. estimates store REG1

. quietly regress ltotexp suppins phylim actlim totchr age female educyr,
> vce(robust)

. estimates store REG2

. estimates table REG! REG2, b(%49.4f) se stats(N r2 F 11)
> keep(suppins income educyr)

Variable REG1 REG2
suppins 0.2556 0.2063
0.0466 0.0471
income 0.0025
0.0010
educyr 0.0480
0.0070

N | 2955.0000 2955.0000
r2 0.2289 0.2406
F 126.9723 132.5337
11 | -4.73e+03  -4.T71e+03

legend: b/se

This table presents coefficients (b) and standard errors (se), with other available options
including t statistics (t) and p-values (p). The statistics given are the sample size,
the R2, the overall F statistic (based on the robust estimate of the VCE), and the
log likelihood (based on the strong assumption of normal homoskedastic errors). The
keep() option, like the drop() option, provides a way to tabulate results for just the key
regressors of interest. Here educyr is a much stronger predictor than income, because it
is more highly statistically significant and R? is higher, and there is considerable change
in the coefficient of suppins.

3.4.5 Even better tables of regression output

The preceding table is very useful for model comparison but has several limitations. It
would be more readable if the standard errors appeared in parentheses. It would be
beneficial to be able to report a p-value for the overall F statistic. Also some work may
be needed to import the table into a table format in external software such as Excel,
Word, or IXTEX.

The user-written esttab command (Jann 2007) provides a way to do this, following
the estimates store command. A cleaner version of the previous table is given by



3.4.5 Even better tables of regression output 89

. * Tabulate results using user-written command esttab to produce cleaner output
. esttab REGL REG2, b(%10.4f) se scalars(N r2 F 11) mtitles
> keep(suppins income educyr) title("Model comparison of REG1-REG2")

Model compariscn of REGL1-REG2

(1) (2)
REG1 REG2
suppins 0.2556%** 0.2063**x*
(0.0466) (0.0471)
income 0.0025*
(0.0010)
educyr 0.0480%*x*
(0.0070)
N 2955 2955
r2 0.2289 0.2406
F 126.9723 132.5337
11 -4733.4476 -4710.9578

Standard errors in parentheses
* p<0.0S, »* p<0.Cl, *** p<0.001

Now standard errors are in parentheses, the strength of statistical significance is given
using stars that can be suppressed by using the nostar option, and a title is added.

The table can be written to a file that, for example, creates a table in IATEX.

* Write tabulated results to a file in latex table format

quietly esttab REGL REG2 using musO3table.tex, replacc b(%410.4f) se
> scalars(N r2 F 11) mtitles keep(suppins age income educyr _cons)
> title("Model comparison of REGL-REG2")

Other formats include .rtf for rich text format (Word), .csv for comma-separated
values, and . txt for fixed and tab-delimited text.

As mentioned earlier, this table would be better if the p-value for the overall F
statistic were provided. This is not stored in e(). However, it is possible to calculate
the p-value given other variablesin e (). Theuser-written estadd command (.Jann 2005)
allows adding this computed p-value to stored results that can then be tabulated with
esttab. We demonstrate this for a smaller table to minimize output.

* Add a user-calculated statistic to the table
estimates drop REGL REG2

quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

estadd scalar pvalue = Ftail(e(df_r),e(df_m),e(F))
(output omitted)
estimates store REGL

quietly regress ltotexp suppins phylim actlim totchr age female educyr,
> vce(robust)
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estadd scalar pvalue = Ftail(e(df_r),e(df_m),e(F))

(output omitted)

estimates store REG2

esttab REGL REG2, b(410.4f) se scalars(F pvalue) mtitles keep(suppins)

(1) (2)
REGL REG2

suppins 0.2556%*x 0.2063»xx
(0.0466) (0.0471)
N 2955 2955
F 126.9723 132.5337
pvalue 0.0000 0.0000

Standard errors in parentheses
* p<0.05, ** p<0.01, **x p<0.001

The estimates drop command saves memory by dropping stored estimates that are no
longer needed. In particular, for large samples the sample inclusion indicator e (sample)
can take up much memory.

Related user-written commands by Jann (2005, 2007) are estout, a richer but more
complicated version of esttab, and eststo, which extends estimates store. Several
earlier nser-written commands, notably, outreg, also create tables of regression output
but are generally no longer being updated by their authors. The user-written reformat
command (Brady 2002) allows formatting of the usual table of output from a single
estimation command.

3.5 Specification analysis

The fitted model has R? = 0.23, which is reasonable for cross-section data, and most re-
gressors are highly statistically significant with the expected coefficientsigns. Therefore,
it is tempting to begin interpreting the results.

However, before doing so, it is useful to subject this regression to some additional
scrutiny because a badly misspecified model may lead to erroneous inferences. We
consider several specification tests, with the notable exception of testing for regressor
exogeneity, which is deferred to chapter 6.

3.5.1 Specification tests and model diagnostics

In microeconometrics, the most common approach to deciding on the adequacy of a
model is a Wald-test approach that fits a richer model and determines whether the data
support the need for a richer model. For example, we may add additional regressors to
the model and test whether they have a zero coefficient.
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Stata also presents the user with an impressive and bewildering menu of choices of
diagnostic checks for the currently fitted regression; see [R] regress postestimation.
Some are specific to OLS regression, whereas others apply to most regression models.
Some are visual aids such as plots of residuals against fitted values. Some are diagnostic
statistics such as infiuence statistics that indicate the relative importance of individual
observations. And some are formal tests that test for the failure of one or more assump-
tions of the model. We briefly present plots and diagnmostic statistics, before giving a
lengthier treatment of specification tests.

3.5.2 Residual diagnostic plots

Diagnostic plots are used less in microeconometrics than in some other branches of
statistics, for several reasons. First, economic theory and previous research provide a
lot of guidance as to the likely key regressors and functional form for a model. Studies
rely on this and shy away from excessive data mining. Secondly, microeconometric
studies typically use large datasets and regressions with many variables. Many variables
potentially lead to many diagnostic plots, and many observations make it less likely
that any single observation will be very influential, unless data for that observation are
seriously miscoded.

We consider various residual plots that can aid in outlier detection, where an outlier
is an observation poorly predicted by the model. One way to do this is to plot actual
values against fitted values of the dependent variable. The postestimation command
rviplot gives a transformation of this, plotting the residuals @; = y; — ¥; against the
fitted values ¥; = xﬁﬁ We have

. * Plot of residuals against fitted values
. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. rviplot

Residuals
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Figure 3.2. Residuals plotted against fitted values after OLS regression
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Figure 3.2 does not indicate any extreme outliers, though the three observations
with a residual less than —5 may be worth investigating. To do so, we need to generate
U by using the predict command, detailed in section 3.6, and we need to list some
details on those observations with & < —5. We have

* Details on the outlier residuals
predict uhat, residual

predict yhat, xb
list totexp ltotexp yhat uhat if uhat < -5, clean

totexp ltotexp yhat uhat
1. 3 1.098612 7.254341 -6.155728
2. 6 1.791759 7.513358 -5.721598
3. 9 2.197225 T7.631211  -5.433987

The three outlying residuals are for three observations with the very smallest total an-
nual medical expenditures of, respectively, $3, §6, and §9. The model evidently greatly
overpredicts for these observations, with the predicted logarithm of total expenditures
(yhat) much greater than ltotexp.

Stata provides several other residual plots. The rvpplot postestimation command
plotsresiduals against an individual regressor. The avplot command providesan added-
variable plot, or partial regression plot, that is a useful visual aid to outlier detection.
Other commands give component-plus-residual plots that aid detection of nonlinearities
and leverage plots. For details and additional references, see [R] regress postestima-
tion.

3.5.3 [Influential ocbservations

Some observations may have unusual influence in determining parameter estimates and
resulting model predictions.

Influential observations can be detected using one of several measures that are large
if the residual is large, the leverage measure is large, or both. The leverage measure
of the i¢th observation, denoted by h; equals the ith diagonal entry in the so-called
hat matrix H = X(X’'X) -1X. If h; is large, then y; has a big influence on its OLS
prediction §; because ¥ = Hy. Different measures, including h,, can be obtained by
using different options of predict. .

A commonly used measure is dfits;, which can be shown to equal the (scaled) differ-
ence between predictions of y; with and without the ith observation in the OLS regression
(so dfits means difference in fits). Large absolute values of dfits indicate an influential
data point. One can plot dfits and investigate further observe.tions with outlying values
of dfits. A rule of thumb is that observations with |dfits| > 2\/7;/_N may be worthy of
further investigation, though for large datasets this rule can suggest that many obser-
vations are influential.

The dfits option of predict can be used after regress provided that regression
is with default standard errors because the underlying theory presumes homoskedastic
errors. We have
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. * Compute dfits that combines outliers and leverage
. quietly regress ltotexp suppins phylim actlim totchr age female income

. predict dfits, dfits
. scalar threshold = 2*sqrt((e(df_m)+1)/e(N))

. display "dfits threshold = " %6.3f threshold
dfits threshold = 0.104

. tabstat dfits, stat (min pl p5 p95 p99 max) format(49.3f) col(stat)
variable min pl pPS pSS p99S max

dfits -0.421 -0.147 -0.083 0.085 0.127 0.221

. list dfits totexp ltotexp yhat uhat if abs(dfits) > 2+xthreshold & e(sample),

> clean
dfits  totexp ltotexp ybat ubat
1. +-.2319179 3 1.098612 7.254341 -6.155728
2. -.30029%4 6 1.791759 T7.513358 -5.721598
3. -.2T765266 9 2.197225 T7.631211  -5.433987
10.  -.2170063 30 3.401197 8.348724  -4.947527
42, -.2612321 103  4.634729 7.57982  -2.945091
44. -.4212185 110 4.70048 8.993904  -4.293423
108.  -.2326284 228 5.429346 7.971406 -2.54206
114, -.2447627 239 5.476463 T7.946239 -2.469776
137.  -.2177336 283 5.645447 T7.929719  -2.284273
211, -.211344 415 6.028278 8.028338 -2.00006
2925, 2207284 62346 11.04045 8.660131 2.380323

Here over 2% of the sample has [cfits| greater than the suggested threshold of 0.104.
But only 11 observations have |dfits| greater than two times the threshold. These
correspond to observations with relatively low expenditures, or in one case, relatively
high expenditures. We conclude that no observation has unusual influence.

3.5.4 Specification te'.;ts

Formal model-specification tests have two limitations. First, a test for the failure of
a specific model assumption may not be robust with respect to the failure of another
assumption that is Kot under test. For example, the rejection of the null hypothesis
of homoskedasticity may be due to a misspecified functional form for the conditional
mean. An example is given in section 3.3.5. Second, with a very large sample, even
trivial deviations from the null hypothesis of correct specification will cause the test to
reject the null hypothesis. For example, if a previously omitted regressor has a very
small coefficient, say, 0.000001, then with an infinitely large sample the estimate will be
sufficiently precise that we will always reject the null of zero coefficient.

Test of omitted variables

The most common specification test is to include additional regressors and test whether
they are statistically significant by using a Wald test of the null hypothesis that the
coefficient is zero. The additional regressor may be a variable not already included, a
transformation of a variable(s) already included such as a quadratic inage, or a quadratic
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with interaction terms in age and education. If groups of regressors are included, such
as a set of region dummies, test can be used after regress to perform a joint test of
statistical significance.

In some branches of biostatistics, it is common to include only regressors with p <
0.05. In microeconometri®s, it is common instead to additionally include regressors that
are statistically insignificant if economic theory or conventional practice includes the
variable as a control. This reduces the likelihood of inconsistent parameter estimation
due to omitted-variables bias at the expense of reduced precision in estimation.

Test of the Box—Cox model

A common specification-testing approach is to fit a richer model that tests the current
model as a special case and perform a Wald test of the parameter restrictions that lead
to the simpler model. The preceding omitted-variable test is an example.

Here we consider a test specific to the current example. We want to decide whether
a regression model for medical expenditures is better in logs than in levels. There is no
obvious way to compare the two models because they have different dependent variables.
However, the Box—Cox transform leads to a richer model that includes the linear and
log-linear models as special cases. Specifically, we fit the model with the transformed
dependent variable

vl —~1
9(v:,0) = 49— =xB+u

where § and 3 are estimated under the assumption that w; ~ N(0,o2). Three leading
cases are 1) g(y,0) =y—1if 0 =1; 2) g(y,) = Iny if 6 = 0; and 3) 9(v,0) =1-1/y
if § = —1. The log-linear model is supported if 8 is close to 0, and the linear model is
supported if § = 1.

The Box-Cox transformation introduces a nonlinearity and an additional unknown
parameter 6 into the model. This moves the modeling exercise into the domain of
nonlinear models. The model is straightforward to fit, however, because Stata provides
the boxcox command to fit the model. We obtain

. * Boxcox model with lhs variable transformed
. boxcox totexp suppins phylim actlim totchr age female income if totexp>0, nolog
Fitting comparison model

Fitting full model

Number of obs = 2955

LR chi2(7) = 773.02

Log likelihood = -28518.267 Prob > chi2 = 0.000
totexp Cocf. Std. Err. z P>lz| [95%4 Conf. Intervall

/theta .0758956 .0096386 7.87 0.000 .0570042 .0947869
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Estimates of scale-variant parameters

Coef .
Notrans
suppins .4459618
phylim .ST7317
actlim .6905939
totchr 6754338
age .0051321
female -.1767976
income .0044039
_cons 8.930566
/sigma 2.189679
Test Restricted LR statistic P-value
HO: log likelihood chi2 Prob > chi2
theta = -1 -37454.643 17872.75 0.000
theta = 0 -28550.353 64.17 0.000
theta = 1 -31762.809 6489.08 0.000

The null hypothesis of § = 0 is strongly rejected, so the log-linear model is rejected.
However, the Box—Cox model with general § is difficult to interpret and use, and the
estimate of 6§ = 0.0759 gives much greater support for a log-linear model ( = 0) than
the linear model (9 = 1). Thus we prefer to use the log-linear model.

Test of the functional form of the conditional mean

The linear regression model specifies that the conditional mean of the dependent variable
(whether measured in levels or in logs) equals x;3. A standard test that this is the
correct specification is a variable augmentation test. A common approach is to add
powers of §; = x/(3, the fitted value of the dependent variable, as regressors and a test
for the statistical significance of the powers.

The estat ovtest postestimation command provides a RESET test that regresses y
on x and 32, %% and %', and jointly tests that the coefficients of 52, 7%, and g* are zero.
We have

. * Variable augmentation test of conditional mean using estat ovtest

. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce (robust)

. estat ovtest

Ramsey RESET test using powers of the fitted values of ltotexp
Ho: model has no omitted variables
F(3, 2944) = 9.04
Prob > F = 0.0000

The model is strongly rejected because p = 0.000.
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An alternative, simpler test is provided by the linktest command. This regTesses y
on 7 and ¥, where now the original model regressors x are omitted, and it tests whether
the coefficient of §2 is zero. We have

. * Link test of functional form of conditional -mean
. quietly regress ltotexp suppins phylim actlim totchr age female income,
> vce(robust)

. linktest
Source ss df MS Number of obs = 2955
F( 2, 2952) = 454.81
Model 1301.41696 2 650.708481 Prob > F = 0.0000
Residual 4223.47242 2952 1.43071559 R-squared = 0.,2356
Adj R-squared = 0.2350
Total 5524.88938 2954 1.87030785 Root MSE = 1,1961
ltotexp Coef. Std. Err. t P>ltl [95% Conf. Intervall
~hat 4.429216 . 6779517 6.53 0.000 3.09991 5.758522
_hatsq -.2084091 .0411515 -5.06 0.000 -.2890976 -.1277206
_cons -14.01127 2.779936 -5.04 0.000 -19.46208 -8.56046

Again the null hypothesis that the conditional mean is correctly specified is rejected.
A likely reason is that so few regressors were included in the model. for pedagogical
reasons.

The two preceding commands had different formats. The first test used the estat
ovtest command, where estat produces various statistics following estimation and the
particular statistics available vary with the previous estimation command. The second
test used linktest, which is available for a wider range of models.

Heteroskedasticity test

One consequence of heteroskedasticity is that default OLS standard errors are incorrect.
Thiscan be readily corrected and guarded against by routinely using heteroskedasticity-
robust standard errors.

Nonetheless, there may be interest in formally testing whether heteroskedasticity is
present. For example, the retransformation methods for the log-linear model used in
wection 3.6.3 assume homoskedastic errors. In section 5.3, we present diagnostic plots
for heteroskedasticity. Here we instead present a formal test.

A quite general model of heteroskedasticity is
Var(ylx) = h(en + 2',)

where h(-) is a positive monotonic function such as exp(-) and the variables in z are
functions of the variables in x. Tests for heteroskedasticity are tests of

Ho: Qg = 0

and can be shown to be independent of the choice of function k(-). We reject Hyp at
the a level if the test statistic exceeds the a critical value of a chi-squared distribution
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with degrees of freedom equal to the number of components of z. The test is performed
by using the estat hettest postestimation command. The simplest version is the
Breusch—-Pagan Lagrange multiplier test, which is equal to N times the uncentered
explained sum of squares from the regression of the squared residuals on an intercept
and z. We use the iid option to obtain a different version of the test that relaxes the
default assumption that the errors are normally distributed.

Several choices of the components of z are possible. By far, the best choice is to
use variables that are a priori likely determinants of heteroskedasticity. For example, in
regressing the level of earnings on several regressors including years of schooling, it is
likely that those with many years of schooling have the greatest variability in earnings.
Such candidates rarely exist. Instead, standard choices are to use the OLS fitted value
¥, the default for estat hettest, or to use all the regressors so z = x. White’s test
for heteroskedasticity is equivalent to letting z equal unique terms in the products and
cross products of the terms in x.

We consider z = ¥ and z = x. Then we have

* Heteroskedasticity tests using estat hettest and option iid
quietly regress ltotexp suppins phylim actlim totchr age female income

estat hettest, iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of ltotexp

chi2(1)= 32.87
Prob > chi2 = 0.0000

estat hettest suppins phylim actlim totchr age female income, iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: suppins phylim actlim totchr age female income

chi2(7) = 93.13
Prob > chi2 = 0.0000

Both versions of the test, with z = ¥ and with z = x, have p = 0.0000 and strongly
reject homoskedasticity.

Omnibus test

An alternative to separate tests of misspecification is an omnibus test, which is a joint
test of misspecification in several directions. A leading example is the information ma-
trix (IM) test (see section 12.7), which is a test for correct specification of a fully para-
metric model based on whether the IM equality holds. For linear regression with normal
homoskedastic errors, the IM test can be shown to be a joint test of heteroskedasticity,
skewness, and nonnormal kurtosis compared with the null hypothesis of homoskedas-
ticity, symmetry, and kurtosis coefficient of 3; see Hall (1987).

The estat imtest postestimation command computes the joint IM test and also
splits it into its three components. We obtain



98 Chapter 3 Linear regression basics

* Ipformation matrix test
quietly regress ltotexp suppins phylim actlim totchr age female income

estat imtest

Cameron & Trivedi’'s decomposition of IM-test

Source chi2 df P
Heteroskedasticity 139.90 31 0.0000
Skewness 35.11 7 0.0000
Kurtosis 11.96 1 0.0005
Total 186.97 39 0.0000

The overall joint IM test rejects the model assumption that y ~ N(x’'3, 0‘21), because
p = 0.0000 in the Total row. The decomposition indicates that all three assumptions
of homoskedasticity, synunetry, and normal kurtosis are rejected. Note, however, that
the decomposition assumes correct specification of the conditional mean. If instead the
mean is misspecified, then that could be the cause of rejection of the model by the IM
test.

3.5.5 Tests have power in more than one direction

Tests can have power in more than one direction, so that if a test targeted to a particular
type of model misspecification rejects a model, it is not necessarily the case that this
particular type of model misspecification is the underlying problem. For example, a test
of heteroskedasticity may reject homoskedasticity, even though the underlying cause
of rejection is that the conditional mean is misspecified rather than that errors are
heteroskedastic.

To illustrate tlils example, we use the following simulatior: exercise. The DGP is one
with homoskedastic normal errors

y; = exp(1+0.25 X z; + 4 x z2) + uy,
z; ~U(0,1), wi~ N(0,1)

We instead fit a model with a misspecified conditional mean function:
y=P0G+ bz + G’ +v

We consider a simulation with a sample size of 50. We generate the regressors and
the dependent variable by using commands detailed in section 4.2. We obtain

* Simulation to show tests have power in more than one direction
clear all

set, obs 50
obs was 0, now 50

set. seed 10101

. gemerate x = runiform() // x - uniform(0,1)
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generate u = rnormal() // u - N(O,1)
generate y = exp(l + 0.25%x + 4*x"2) + u
generate xsq = x~2

regress y x xsq

Source ss df MS Number of obs = 50

. F( 2, 47) = 168.27

Moglel 76293.9057 2 38146.9528 Prob > F = 0.0000
Residyal 10654.8492 47 226.698919 R-squared = 0.8775
Adj R-squared = 0.8722

Total 86948.7549 49 1774.46438 Root MSE = 15.057

y Coef. Std. Err. t P>ltl [95%4 Conf. Intervall

% -228.8379 29.3865 -7.79 0.000 -287.9559 -169.7199

¥sq 342.7992 28.71815 11.94 0.000 285.0258 400.5727
-cens 28.68793 6.605434 4.34 0.000 15.39951 41.97635

The misspecified model seems to fit the data very well with highly statistically significant
regressors and an RZ of 0.88.

Now consider a test for heteroskedasticity:

. * Test for heteroskedasticity
. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of Yy

chi2(1) 22.70
Prob > chi2 = 0.0000

This test strongly suggests-that the errors are heteroskedastic because p = 0.0000, even
though the DGP had homoskedastic errors.

The problem is that the regression function itself was misspecified. A RESET test
yields

* Test for misspecified conditional mean
estat ovtest

Ramsey RESET test using powers of the fitted values of y
Ho: model has no omitted variables
F(3, 44) = 2702.16
Prob > F = 0.0000

This strongly rejects correct specification of the conditional mean because p = 0.0000.

Going the other way, could misspecification of other features of the model lead to
rejection of the conditional mean, even though the conditional mean itself was cor-
rectly specified? This is an econometrically subtle question. The answer, in general, is
yes. However, for the linear regression model, this is not the case essentially because
consistency of the OLS estimator requires only that the conditional mean be correctly
specified.
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3.6 Prediction

For the linear regression model, the estimator of the conditional mean of y given x = xy,
B(y|xp) = x50, is the conditional predictor § = x;f*} We focus here on prediction for
each observation in the sample. We begin with prediction from a linear model for medical
expenditures, because this is straightforward, before turning to the log-linear model.

Further details on prediction are presented in section 3.7, where weighted average
prediction is discussed, and in sections 10.5 and 10.6, where many methods are pre-
sented.

3.6.1 In-sample prediction

The most common type of prediction is in-sample, where evaluation is at the observed
regressor values for each observation. Then ¥; = x;8 predicts B(y.|x;) far s =1,..., N.

To do this, we use predict after regress. The syntax for predict is

predict [type] newvar [zf} [m] [, options]

The user always provides a name for the created variable, newrsar. The default option is
the prediction ¥;. Other options yield residuals (usual, standardized, and studentized),
several leverage and influential observation measurcs, predicted values, and associated
standard errors of prediction. Wehave already used some of these options in section 3.5.
The predict command can also be used for out-of-sample prediction. When used for
in-sample prediction, it is good practice to add the if e (sample) qualifier, because this
ensures that prediction is for the same sample as that used in estimation.

We consider prediction based on a linear regression model in levels rather than logs.
We begin by reporting the regression results with totexp as the dependent variable.

* Change dependent variable to level of positive medical expenditures
use musO3data.dta, clear
keep if totexp > 0O

(109 observations deleted)
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. regress totexp suppins phylim actlim totchr age female income, vce(robust)

Linear regression Number of obs 2955
F( 7, 2947) 40.58
Prob > F 0.:0000
R-squared 0.1163
Root MSE 14285

Robust
totexp Coef. Std. Err. t P>ltl| [95% Conf. Intervall
suppins 724.8632 427.3045 1.70 0.090 -112.9824 1562.709
phylim 2389.019 544.3493 4.39 0.000 1321.675 3456.362
actlim 3900.491 705.2244 5.53 0.000 2517.708 5283.273
totchr 1844.377 186.8938 9.87 0.000 1477.921 2210.832
age -85.36264 37.81868 -2.26 0.024 -159.5163 -11.20892
female -1383.29 432.4759 -3.20 0.001 -2231.275 -535.3044
income 6.46894 8.570658 0.75 0.450 -10.33614 23.27402
_cons 8358.954 2847.802 2.94 0.003 2775.07 13942.84

We then predict the level of medical expenditures:

. * Prediction in model linear in levels
. predict yhatlovels
(option xb assumed; fitted values)

sumparize totexp yhatlecvels

Variable ‘ Obs Mean Std. Dev. Min Max
totexp 2955 7290.235 11990.84 3 125610
yhatlevels 2955 7290.235 4089.624 -236.3781 22559

The summary statistics show that on average the predicted value yhatlevels equals
the dependent variable. This suggests that the predictor does a good job. But this is
misleading because this is always the case after OLS regression in a model with an inter-
cept, since then residuals sum to zero implying > v; = 2. 9:. The standard deviation
of yhatlevels is $4,090, so there is some variation in the predicted values.

For this example, a more discriminating test is to compare the median predicted
and actual values. We have

* Compare median prediction and median actual value
tabstat totexp yhatlevels, stat (count pS0) col(stat)

variable N pS0
totexp 2955 3334
yhatlevels 2955 6464.692

There is considerable difference between the two.7 a consequence of the right-skewness
of the original data, which the linear regression model does not capture.

The stdp option provides the standard error of the ﬁrediction, and the stdf option
provides the standard error of the prediction for each sample observation, provided the
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original estimation command used the default VCE. We therefore reestimate without
vece (robust) and use predict to obtain

* Compute standard errors of prediction and forecast with default VCE
quietly regress totexp suppins phylim actlim totchr age female income

predict yhatstdp, stdp.
predict yhatstdf, stdf
summarize yhatstdp yhatstdf

Variable | obs Mean  Std. Dev. Min Max
yhatstdp 2955 572.7 129.6575 393.5964 2813.983
yhatstdf | 2955 11300.52 10.50946  11292.12 11630.8

The first quantity views x’LB as an estimate of the conditional mean x{3 and is quite
precisely estimated because the average standard deviation is $573 compared with an
average prediction of $7,290. The second quantity views x’3 as an estimate of the actual
value y; and is very imprecisely estimated because y; = x.3 + v,, and the error u; here
has relatively large variance since the levels equation has s = 11285.

More generally, microeconometric models predict poorly for a given individual, as
evidenced by the typically low values of R> obtained from regression on cross-section
data. These same models may nonetheless predict the conditional mean well, and it is
this latter quantity that is needed for policy analysis that focuses on average behavior.

3.6.2 Marginal effects

The nfx postestimation command calculates MEs and elasticities evaluated at sample
means, along with associated standard errors and confidence intervals where relevant.
The default is to obtain these for the quantity that is the default for predict. For
many estimation commands, including regress, this is the conditional mean. Then
mfx computes for each continuous regressor dE(y(x)/dz, and for 0/1 indicator variables
AE(y|x), evaluated at 8 = B and X = X.

For the linear model, the estimated ME of the jth regressor is Ej, so there is no need
to use mfx. But mfx can also be used to compute elasticities and semielasticities. For
example, the eyex option computes the elasticity dy/9z x {z/y), evaluated at sample
means, which equals Ej x (Z;/4) for the linear model. We have

.ox Computé elasticity for a specified regressor
. quietly regress totexp suppins phylim actlim totchr age female income,
> vce(robust)

. mfx, varlist(totchr) eyex

Elasticities after regress
y = Fitted values (predict)
7290.2352

variable ey/ex Std. Err. z p>lzl 954 Cc.I. 1 X

totchr .457613 .04481 10.21  0.000 .369793 .545433 1.8088
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A 1% increase in chronic problems is associated with a 0.46% increase in medical ex-
penditures. The varlist (totchr) option restricts results to just the regressor totchr.

The predict () option of mfx allows the computation of MEs for the other quantities
that can be produced using predict.

3.6.3 Prediction in logs: The retransformation problem

Transformingthe dependent variable by taking the natural logarithm complicates pre-
diction. It is easy to predict E(lny|x), but we are instead interested in E(y|x) because
we want to predict the level of medical expenditures rather than the natural logarithm.
The obvious procedure of predicting Iny and taking the exponential is wrong because
expitE(Iny)} # E(y), just as, for example, v/ E{y%) # E(y).
The log-linear model lny = x’8 + u implies that y = exp(x’B)exp(u). It follows
that
E(yilx:) = exp(x|8)E{exp(u.) }

The simplest prediction is e.\:p(xia), but this is wrong because it ignores the multiple
E{exp(u;)}. Ifit is assumed that u; ~ N(0,2), then it can be shown that E{exp(u;)} =
exp(0.50), which can be estimated by exp(0.567), where G2 is an unbiased estimator
of the log-linear regression model error. A weaker assumption is to assume that wu;
is independent and identically distributed, in which case we can consistently estimate
E{exp(u.)} by the sample average N ~* Z;\;l exp(U;); see Duan (1983).

Applying these methods to the medical expenditure data yields

* Prediction ia levels from a logarithmic model
quietly regress ltotexp suppins phylim actlim totchr age female income

quietly predict lyhat

generate yhatwrong = exp(lyhat)

generate yhatnormal = exp(lyhat)*exp(0.5*e(rmse)~2)
quietly predict uhat, residual

generate expuhat = exp(uhat)

quietly summarize expuhat

generate yhatdaan = r(mean)*exp(lyhat)

summarize totexp yhatwrong yhatnormal yhatduan yhatlevels

Var[iable Obs Mean Std. Dev. Min Max
J texp 2955 7290.235 11990.84 3 125610
yhatErong 2955  4004.453 3303.555 959.5991 37726.22
yhatnbrmal 2955 8249.927 6805.945 1976.955 77723.13
yhatduan 2955 8005.522 6604.318 1918.387 75420.57
yhatlevels 2955 7290.235  4089.624 -236.3781 22559

Ignoring the retransformation bias leads to a very poor prediction, because yhatwrong
has a mean of $4,004 compared with the sample mean of $7,290. The two alterna-
tive methods yield much closer average values of $8,250 and $8,006. Furthermore, the
predictions from log regression, compared with those in levels, have the desirable fea-
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ture of always being positive and have greater variability. The standard deviation of
vhatnormal, for example, is $6,806 compared with $4,090 from the levels model.

3.6.4 Prediction exercise

There are several ways that predictions can be used to simulate the effects of a policy
experiment. We consider the effect of a binary treatment, whether a person has supple-
mentary insurance, on medical expenditure. Here we base our predictions on estimates
that assume supplementary insurance is exogenous. A more thorough analysis could
instead use methods that more realistically permit insurance to be endogenous. As we
discuss in section 6.2.1, a variable is endogenous if it is related to the error term. Our
analysis here assumes that supplementary insurance is not related to the error term.

An obvious comparison is to compare the difference in sample means (71 ~ ¥g),
where the subscript 1 denotes those with supplementary insurance and the subscript
0 denotes those without supplementary insurance. This measure does not control for
individual characteristics. A measure that does control for individual characteristics is
the difference in mean predictions (§, — ¥,), where, for example, §j; denotes the average
prediction for those with health insurance.

We implement the first two approaches for the complete sample based on OLS re-
gression in levels and in logs. We obtain

. * Predicted effect of supplementary insurance: methods 1 and 2
. bysort suppins: summarize totexp yhatlevels yhatduan

=> suppins = 0

Variable Obs Mean Std. Dev. Min Max
totexp 1207 6824.303 11425.94 9 104823
yhatlevels 1207 6824.303 4077.064 -236.3781  20131.43
yhatduan 1207 6745.959 5365.255 1918.387 54981.73

~-> suppins =1

Variable Obs Mean Std. Dev. Min Max
totexp 1748 7611.963 12358.83 3 125610
yhatlevels 1748 7611.963 4068.397 502.9237 22559
yhatduan 1748 8875.255 7212.993 2518.538 75420.57

The average difference is $788 (from 7612 — 6824) using either the difference in sample
means or the difference in fitted values from the linear model. Equality of the two
is a consequence of OLS regression and prediction using the estimation sample. The
log-linear model, using the prediction based on Duan’s method, gives a larger average
difference of $2,129 (from 8875 — 6746).

A third measure is the difference between the mean predictions, one with suppins
set to 1 for all observations and one with suppins = 0. For the linear model, this is
simply the estimated coefficient of suppins, which is §725.
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For the log-linear model, we need to make separate predictions for each individual
with suppins set to 1 and with suppins set to 0. For simplicity, we make predictions
in levels from the log-linear model assuming normally distributed errors. To make these
changes and after the analysis have suppins returned to its original sample values, we
-use preserve and restore (see section 2.5.2). We obtain’

* Predicted effect of supplementary insurance: method 3 for log-linear model
quietly regress ltotexp suppins phylim actlim totchr age female income

preserv.e

quietly replace suppins = 1

quietly predict lyhatl

generate yhatnormall = exp(lyhatl)*exp(0.5*e(rmse)"2)
quietly replace suppins = 0

quietly predict lyhatO

generate yhatnormalO = exp(lyhat0)=exp(0.5*e (rmse) "2)
generate treateffect = yhatrnormall - yhatnormalO
summarize yhatnormall yhatnormalQO treateffect

Variable Obs Mean Std. Dev. Min Max
yhatnormall 2955 9077.072 7313.963  2552,825 77723.13
yhatnormalO 2955 7029.453 5664 .069 1976.955 60190.23
treateffect 2955 2047.619 1649.894 575.8701 17532.91

. restore

While the average treatment effect of $2,048 is considerably larger than that obtained
by using the difference in sample means of the linear model, it is comparable to the
estimate produced by Duan’s method.

3.7 Sampling weights

The analysis to date has presumed simple random sampling, where sample observations
have been drawn from the population with equal probability. In practice, however,
many microeconometric studies use data from surveys that are not representative of
the population. Instead, groups of key interest to policy makers that would have too
few observations in a purely random sample are oversampled, with other groups then
undersampled. Examples are individuals from racial minorities or those with low income
or living in sparsely populated states.

As explained below, weights should be used for estimation of population means and
for postregression prediction and computation of MEs. However, in most cases, the
regression itself can be fitted without weights, as is the norm in microeconometrics. If
weighted analysis is desired, it can be done using standard commands with a weighting
option, which is the approach of this section and the standard approach in microecono-
metrics. Alternatively, one can use survey commands as detailed in section 5.5.
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3.7.1 Weights

Sampling weights are provided by most survey datasets. These are called probability
weights or pweights in Stata, though some others call them inverse-probability weights
because they are inversely proportional to the probability of inclusion of the sample. A
pweight of 1,400 in a survey of the U.S. population, for example, means that the obser-
vation is representative of 1,400 U.S. residents and the probability of this observation
being included in the sample is 1/1400.

Most estimation commands allow probability weighted estimators that are obtained
by adding (pweight=weight], where weight is the name of the weighting variable.

To illustrate the use of sampling weights, we create an artificial weighting variable
(sampling weights are available for the MEPS data but were not included in the data
extract used in this chapter). We manufacture weights that increase the weight given to
those with more chronic problems. In practice, such weights might arise if the original
sampling framework oversampled people with few chronic problems and undersampled
people with many chronic problems. In this section, we analyze levels of expenditures,
including expenditures of zero. Specifically,

* Create artificial sampling weights
use musO3data.dta, clear

generate swght = totchr~2 + 0.5
summarize swght
Variable | Obs Mean Std. Dev. Min Max

swght | 3064 5.285574 6.029423 .5 49.5

What matters in subsequent analysis is the relative values of the sampling weights rather
than the absolute values. The sampling weight variable swght takes on values from 0.5
to 49.5, so weighted analysis will give some observations as much as 49.5/0.5 = 99 times
the weight given to others.

Stata offers three other types of weights that for most analyses can be igmored.
Analytical weights, called aweights, are used for the quite different purpose of compen-
sating for different observations having different variances that are known up to scale;
see section 5.3.4. For duplicated observations, fweights provide the number of dupli-
cated observations. So-called importance weights, or iweights, are sometimes used in
more advanced programming. ’

3.7.2 Weighted mean

If an estimate of a population mean is desired, then we should clearly weight. In this
example, by oversampling those with few chronic problems, we will have oversampled
people who on average have low medical expenditures, so that the unweighted sample
mean will understate population mean medical expenditures.
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Let w; be the population weight for individual . Then, by defining W = Z:V:I w;
to be the sum of the weights, the weighted mean 7y is

1 N

Y= w Ew;.yi '

=1

with variance estimator (assuming independent observations) V(g ) = {1/W(W —1)}

Zf;l wi(¥, —Fw)? These formulas reduce to those for the unweighted mean if equal
weights are used.

The weighted mean downweights oversampled observations because they will have a
value of pweights (and hence w;) that is smaller than that for most observations. We

have
. * Calculate the weighted mean
. mean totexp [pweight=sught]
Mean estimation Number of obs = 3064
Mean  Std. Err. [95/4 Conf. Intervall
totexp 10670.83 428.5148 9830.62 11511.03

The weighted mean of $10,671 is much larger than the unweightcd mcan of $7,031 (see
section 3.2.4) because the unweighted mean does not adjust for the oversampling of
individuals with few chronic problems.

3.7.3 Weighted regression

The weighted least-squares estimator for the regression of y; on X; with the weights w:
is given by
N N

-1
B 2 : ’
. Pw= ( =] wixix"") Zi:l Wil

The OLS estimator is the special case of equal weights with w; = wj for all ¢ and j.
The default estimator of the VCE is a weighted version of the heteroskedasticity-robust
version in (3.3), which assumes independent observations. If observations are clustered,
then the option vce(cluster clustvar) should be used.

Although the weighted estimator is easily obtained, for legitimate reasons many
microeconometric analyses do not use weighted regression even where sampling weights
are available. We provide a brief explanation of this conceptually difficult issue. For a
more complete discussion, see Cameron and Trivedi (2005, 818-821).

Weighted regression should be used if a census parameter estimate is desired. For
example, suppose we want to obtain an estimate for the U.S. population of the average
change in earnings associated with one more year of schooling. Then, if disadvantaged
minorities are oversampled, we most likely will understate the earnings increase, because
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disadvantaged minorities are likely to have earnings that are lower than average for their
given level of schooling. A second example is when aggregaze state-level data are used
in a natural experiment setting, where the goal is to measure the effect of an exogenous
policy change that affects some states and not other states. Intuitively, the impact on
more populous states should be given more weight. Note that these estimates are being
given a correlative rather than a causal interpretation.

Weighted regression is not needed if we make the stronger assumptions that the DGP
is the specified model y; = x!3 + u: and sufficient controls are assumed to be added
so that the error F(u;/x;) = 0. This approach, called a control-function approach
or a model approach, is the approach usually taken in microeconometric studies that
emphasize a causal interpretation of regression. Under the assumption that E(u.;ix.,) =
0, the weighted least-squares estimator will be consistent for 3 for any choice of weights
including equal weights, and if . is homoskedastic, the most efficient estimator is the
OLS estimator, which uses equal weights. For the assumption that F(u;|x;) = 0 to be
reasonable, the determinants of the sampling frame should be included in the controls
x and should not be directly determined by the dependent variable y.

These points carry over directly to nonlinear regression models. In most cases, mi-
croeconometric analyses take on a model approach. In that case, unweighted estimation
is appropriate, with any weighting based on efficiency grounds. If a census-parameter
approach is being taken, however, then it is necessary to weight.

For our data example, we obtain

. * Perform weighted regression
. regress totexp suppins phylim actlim totchr age female income [pweight=swght]
(sum of wgt is  1.6195e+04)

Linear regression Number of obs = 3064
F( 7, 3056) = 14.08
Prob > F = 0.0000
R-squared = 0.0977
Root MSE = 13824

Robust
totexp Coef. Std. Err. t P>lt! [95% Conf. Intervall
suppins 278.1578  825.6959 0.34 0.736 -1340.818 1897.133
phylim 2484.52 933.7116 2.66 0.008 653.7541 4315.286
actlim 4271.154  1024.686 4.17  0.000 2262.011 6280.296
totchr 1819.929  349.2234 5.21 0.000 1135.193 2504 .666
age -59.3125 68.01237 -0.87 0.383 -192.6671 74.04212
female -2654.432 911.6422 -2.91 0.004 -4441.926 -866.9381
income 5.042348 16.6509 0.30 0.762 -27.60575 37.69045
_cons 7336.758 5263.377 1.39 0.163 -2983. 359 17656.87

The estimated coefficients of all statistically significant variables aside from f emale are
within 10% of those from unweighted regression (not given for brevity). Big differences
between weighted and unweighted regression would indicate that E(u;x;) 7 0 because
of model misspecification. Note that robust standard errors are reported by default.
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3.7.4 Weighted prediction and MEs

After regression, unweighted prediction will provide an estimate of the sample-average
value of the dependent variable. We may instead want to estimate the population-mean
value of the dependent variable. Then sampling weights-should be used in forming an
average prediction.

This point is particularly easy to see for OLS regression. Because 1/N ) ,(y: —
7:) = 0, since in-sample residuals sum to zero if an intercept is included, the average
prediction 1/N 3, §i equals the sample mean 7. But given an unrepresentative sample,
the unweighted sample mean 7 may be a poor estimate of the population mean. Instead,
we should use the weighted average prediction 1/N >, w:¥;, even if 3; is obtained by
using unweighted regression.

For this to be useful, however, the prediction should be based on a model that
includes as regressors variables that control for the unrepresentative sampling.

For our example, we obtain the weighted prediction by typing

* Weighted prediction
quietly predict yhatwols

mean yhatwols [pweight=sught], noheader

Mean Std. Err. (95% Conf. Intervall

yhatwols 10670.83 138.0828 10400.08 10941.57
mean yhatwols, noheader // unweighted prediction

Mean Std. Err. [95%4 Conf. Intervall

yhatwols 7135.206 78.57376 6981.144 7289.269

The population mean for medical expenditures is predicted to be $10,671 using weighted
prediction, whereas the unweighted prediction gives a much lower value of $7,135.

Weights similarly should be used in computing average MEs. For the linear model,
the standard ME 9E{y;|x;)/0z:; equals §; for all observations, so weighting will make
no difference in computing the marginal effect. Weighting will make a difference for
averages of other marginal effects, such as elasticities, and for MEs in nonlinear models.

3.8 OLS using Mata

Stata offers two different ways to perform computations using matrices: Stata matrix
commands and Mata functions (which are discussed, respectively, in appendices A
and B).

Mata, introduced in Stata 9, is much richer. We illustrate the use of Mata by using
the same OLS regression as that in section 3.4.2.
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The program is written for the dependent variable provided in the local macro y and
the regressors in the local macro x1ist. We begin by reading in the data and defining
the local macros.

. * OLS with White robust standard errors using Mata
. use mus0O3data.dta, clear

. keep if totexp > 0 // Analysis for positive medical expenditures only
(109 observations deleted)

. gemerate cons = 1
. local y ltotexp

. local xlist suppins phylim actlim totchr age female income cons

We then move into Mata. The st_view() Mata function is used to transfer the Stata
data variables to Mata matrices y and X, with tokens("*) added to convert “x1list "
to a comma-separated list with each entry in double quotes, necessary for st_view().

The key part of the program forms B = (X'X)"'X'y and 7(B) = (N/N - K)
(X/X)™H(,; @xix])(X’X)~ . The cross-product function cross(X,X) is used to form
X’X because this handles missing values and is more efficient than the more obvious X?X.
The matrix inverse is formed by using cholinv() because this is the fastest method in
the special case that the matrix is symmetric positive definite. We calculate the K x K
matrix Y, Urx;x}; as 3, (@,x}) (Wix}) = A’A, where the N x K matrix A has an ith
row equal to ¥;x;. Now @;x} equals the ith row of the IV x 1 residual vector U times the
ith row of the N x K regressor matrix X, so A can be computed by element-by-element
multiplication of G by X, or (e:*X), where e is U. Alternatively, 3, #%x;x} = X'DX,
where D is an N x N diagonal matrix with entries @2, but the matrix D becomes
exceptionally large, unnecessarily so, for a large N.

. The Mata program concludes by using st.matrix() to pass the estimated ,5 and
V(B) back to Stata.

. mata

mata (type end to exit)
// Create y vector and X matrix from Stata dataset

st_view(y=., ., ""y™") // y is nx1

st_view(X=., ., tokens(" xlist“")) // X is nxk

XXinv = cholinv(cross(X,X)) // XXinv is inverse of X°X

b = XXinv*cross(X,y) // b= [(XX)-1l*X"y

0o =y - X«b

o = rows(X)

k = cols(X)

s2 = (e"e)/(n-k)

vdef = s2*XXinv // default VCE not used here
vwhite = XXinv*((e:*X) "(e:*X)*n/(n-k))*XXinv // robust VCE
st_matrix("b",b") // pass results from Mata to Stata
st_matrix("V",vwhite) // pass results from Mata to Stata

: end
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Once back in Stata, we use ereturn to display the results in a format similar to that
for built-in commands, first assigning names to the colhunns and rows of b and V.

. * Use Stata ereturn display to present nicely formatted results

matrix colmames b = “xlist” ~
matrix colnames V = “xlist’
matrix rownames V = “xlist”

ereturn post b V
ereturn display

Coef. Std. Err. z P>lzl [95% Conf. Intervall

suppins .2556428 .0465982 5.49 0.000 .1643119 .3469736
phylim .3020598 .057705 5.23 0.000 . 18896 .4151595
actlim .3560054 .0634066 5.61 0.000 .2317308 .48028
totg¢hr .3758201 .0187185 20.08 0.000 .3391326 .4125077
3ge .0038016 .0037028 1.03 0.305 -. 0034558 .011059
female -.0843275 .045654 -1.85 0.065 -.1738076 .0051526
income . 0025498 .0010468 2.44 0.015 .0004981 .0046015
cons 6.703737 .2825751 23.72 0.000 6.1499 7.257575

The results are exactly the same as those given in section 3.4.2. when we used regress
with the vce (robust) option.

3.0 Stata resources

The key Stata references are [U] User's Guide and [R] regress, [R] regress postes-
timation, [R| estimates, [R] predict, and [R] test. A useful user-written command
is estout. The material in this chapter appears in many econometrics texts, such as
Greene (2008).
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Exercises

Fit the model in section 3.4 using only the first 100 observations. Compute stan-
dard errors in three ways: default, heteroskedastic, and cluster-robust where
clustering is on the number of chronic problems. Use estimates to produce a
table with three sets of coefficients and standard errors, and comment on any
appreciable differences in the standard errors. Construct a similar table for three
alternative sets of heteroskedasticity-robust standard errors, obtained by using the
vce (robust), vce (hc2), and vce (hc3) options, and comment on any differences
between the different estimates of the standard errors.

. Fit the model in section 3.4 with robust standard errors reported. Test at 5%

the joint significance of the demographic variables age, female, and income. Test
the hypothesis that being male (rather than female) has the same impact on
medical expenditures as aging 10 years. Fit the model under the constraint that
Bpryiin = Bace1sn bY first typing constraint 1 phylim = actlim and then by using
cosreg with the constraints(1) option.



Chapter 3 Linear regression basics

. Fit themodel in section 3.5, and implement the RESET test manually by regressing

yon x and 32, ¥, and §¢ and jointly testing that the coefficients of §2, 7°, and J*
are zero. To get the same results as estat ovtest, do you need to use default or
robust estimates of the VCE in this regression? Comment. Similarly, implement
linktest by regressing y on J and §> and testing that the coefficient of ° is
zero. To get the same results as linktest, do you need to use default or robust
estimates of the VCE in this regression? Comment.

. Fit the model in section 3.5, and perform the standard Lagrange multiplier test

for heteroskedasticity by using estat hettest with z = x. Then implement the
test manually as 0.5 times the explained sum of squares from the regression of y;
on an intercept and z,, where y; = {@?/(1/N) 2 @2} — 1 and 1; is the residual
from the original OLS regression. Next use estat hettest with the iid option
and show that this test is obtained as IV x R? where R? is obtained from the
regression of &7 on an intercept and z;.

. Fit the model in section 3.6 on levels, except use all observations rather than

those with just positive expenditures, and report robust standard errors. Predict
medical expenditures. Use correlate toobtain the correlation coefficient between
the actual and fitted value and show that, upon squaring, this equals R> Show
that the linear model mfx without options reproduces the OLS coefficients. Now
use mfx with an appropriate option to obtain the income elasticity of medical
expenditures evaluated at sample means.

. Fit the model in section 3.6 on levels, using the first 2,000 observations. Use these

estimates to predict medical expenditures for the remaining 1,064 observations,
and compare these with the actual values. Note that the model predicts very
poorly in part because the data were ordered by totexp.



