
3 linear regression basics 

3. 1 I rotroductioro 

Linear regression analysis is often the starting point of an empirical investigation. Be­
cause of its relative simplicity, it is useful for illustrating the different steps of a typical 
modeling cycle that involves an initial specification of the model followed by estimation, 
diagnostic checks, and model respecification. The purpose of such a linear regression 
analysis may be to summarize the data, generate conditional predictions, or test and 
evaluate the role of specific regressors. We will illustrate these aspects using a specific 
data example. 

This chapter is limited to basic regression analysis on cross-section data of a contin­
uous dependent variable. The setup is for a single equation and exogenous regressors. 
Some standard complications of linear regression, such as misspecification of the condi­
tional mean and model errors that are heteroskedastic, will be considered. In particular, 
we model the natural logarithm of medical expenditures instead of the level. We will 
ignore other various aspects of the data that can lead to more sophisticated nonlinear 
models presented in later chapters. 

3.2 Data and data summary 

The first step is to decide what dataset will be used. In turn, this decision depends on 
the population of interest and the research question itself. We discussed how to convert 
a raw dataset to � form amenaole to regression analysis in chapter 2. In this section. 
we present ways to summarize and gain some understanding of the data, a necessary 
step before any regression analysis. 

3.2.1 Data description 

We analyze medical expenditures of individuals 6.5 years and older who qualify for 
i1ealth care under the U.S .  Medicare program. The original data source is the Medical 
Expenditure Panel Survey (MEPS). 

Medicare does not cover all medical expenses. For example, copayments for medical 
services and expenses of prescribed pharmaceutical drugs were not covered for the time 
period studied here. About half of eligible individuals therefore purchase supplementary 
insurance in the private market that provides insurance coverage against various out­
of-pocket expenses. 
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In this chapter, we consider the impact of this supplementary insurance on total an­

nual 
medical expenditures of an individual, measured in dollars. A formal investigation 

must control for the influence of other factors that also determine individual medical 
expenditure, notably, sociodemographic factors such as age, gender, education and in­
come, geographical location, and health-status measures such as self-assessed health 

and 
presence of chronic or limiting conditions. In this chapter, as in other chapters, 

we 
in:;tead deliberately use a short list of regressors. This permits shorter output and 

:;impler discussion of the results, an advantage because our intention is to simply explain 

the 
methods and tools available in Stata. 

3.2.2 
Variable description 

Given the Stata dataset for analysis, we begin by using the describe command to list 
various features of the variables to be used in the linear regression. The command with­

out 
a variable list describes all the variables in the dataset. Here we resttict attention 

to 
the variables used in this chapter. 

• Variable description for medical expenditure dataset 
use mus03dat a . dta 

describe totexp ltotexp posexp suppins phylim actlim totchr age female income 
storage display value 

variable name type format label variable label 

totexp 
ltotoxp 
posexp 
suppins 
phylim 
act lim 
totchr 
age 
female 
income 

double 'l.12 .0g 
float /.9 .0g 
float /.9.0g 
float /.9.0g 
double 'l.12.0g 
double 'l.12.0g 
double 'l.12.0g 
double r. 12 .0g 
double 'l. 12.0g 
double 'l.12.0g 

Total medical expenditure 
ln(totexp) if totexp > 0 
=1 if total expenditure > 0 
=1 if has supp priv insurance 
=1 if has functional limitation 
=1 if has activity limitation 
# of chronic problems 
Age 
= 1  if female 
annual household income/1000 

The 
variable types and format columns indicate that all the data are numeric. In this 

case, some variables are stored in single precision (float) and some in double precision 

(dou
ble) .  From the variable labels, we expect totexp to be nonnegative; 1 totexp to  

be 
missing if totexp equals zero; posexp, suppins, phylim, · act lim, and female to  

be 
0 or 1 ;  totchr to be a nonnegative integer; age to  be positive; and income to be 

negative or positive. Note that the integer variables could have been stored much more 
compactly as integer or byte .  The variable labels provide a short description that is 
helpful but may not fully describe the variable. For example, the key reg,Tessor suppins 

W<1S 
created by aggTegating across several types ofprivate supplementary insurance. No 

labels for the values taken by the categorical variables have been provided. 
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3.2.3 Summary statistics 

It is essential in any data analysis to first check the data by using the summarize 
command. 

• S=mary sta t=.stics for medical expenditure dataset 
summarize totexp ltotexp posexp suppins phylim actlim totchr age female income 

Variable Obs Mean Std. Dev. Min Max 

totexp 3064 7030 . 889 11852.75 0 125610 
ltotexp 2955 8 . 059866 1 . 367592 1 . 098612 1 1 . 74094 
posexp 3064 . 9 644256 . 1852568 0 1 

suppins 3064 . 5812663 .4934321 0 
phylim 3064 .4255875 .4945125 0 

actlim 3064 .2836162 . 4508263 0 
totchr 3064 1. 754243 1 . 307197 0 7 

age 3064 74.17167 6 . 372938 65 90 
female 3064 . 5796345 .4936982 0 
income 3064 22. 47472 22.53491 -1 312.46 

On average, 96% of individuals incur medical eAlJenditures during a year; 58% have 
supplementary insurance; 43% have functional limitations; 28% have activity limita­
tions; and 58% are female, as the elderly population is disproportionately female be­
cause of the greater longevity of women. The only variable to have missing data is 
1 totexp, the natural logarithm of totexp, which is missing for the (3064 - 2955) = 109 
observations with totexp = 0. 

All variables have the expected range, except that income is negative. To see how 
many observations on income are negative, we use the tabulate command, restricting 
attention to nonpositive observations to limit output. 

• Tabulate variable 
tabulate income if income <= 0 

annual 
household 

income/1000 Freq.  Percent Clllll. 

-1 1 . 14 1 . 14 
0 87 98 .86  100.00 

Total 88 100 .00  

Only one observation i s  negative, and negative income is  possible for income from self­
employment or investment. We include the observat.ion in the analysis here, though 
checking the original data source may be warranted. 

Much of the subsequent regression analysis will drop the 109 observations with zero 
medical expenditures, . so in a research paper, it would be best to report summary 
statistics without these observations. 
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3.2.4 More-detailed summary statistics 

Additional descriptive analysis of key variables, especially the dependent variable, is 
useful. For totexp, the level of medical expenditures, summarize , detail yields 

* Detailed summary statistics of a single variable 
summarize totexp , detail 

Total medical expenditure 

Percentiles Smallest 
1/. 0 0 
5/. 112 0 

10/. 393 0 Dbs 3064 
25/. 1271 0 Sum of Wgt. 3064 

50/. 3134 . 5  M8an 7030 . 889 
Largest Std.  Dev. 11852.75 

75/. 7151 104823 
90/. 17050 108256 Variance 1 . 40e+08 
95/. 27367 123611 Skeuness 4 . 1 65058 
99/. 62346 125610 Kurtosis 2 6 . 26796 

Medical expenditures vary greatly across individuals, with a standard deviation of 
11,853, which is almost twice the mean. The median of 3, 134 is much smaller than 
the mean of 7,031, reflecting the skewness of the data. For variable x, the skewness 
statistic is a scale-free measure of skewness that estimates E{(x - p,)3}/<J312, the third 
central moment standardized by the second central moment. The skewness is zero for 
symmetrically distributed data. The value h�re of 4 . 16 indicates considerable right 
skewness. The kurtosis statistic is an estimate of E{(x - J.t)"1 }/<J4 , the fourth central 
mm._nent standardized by the second central moment . The reference value is 3, the value 
for normally distributed data. The much higher value here of 26.26 indicates that the 
tails are much thicker than those of a normal distribution. You can obtain additional 
summary statistics by using the cen tile command to obtain other percentiles and by 
using the table command, which is explained in section 3.2.5. 

We conclude that the distribution of the dependent variable is considerably skewed 
and has thick tails. These complications often arise for commonly studied individual­
level economic variables such as expenditures, income, earnings, wages, and house prices. 
It is possible that including regressors will eliminate the skewness, but in practice, much 
of the variation in the data will be left unexplained (R2 < 0.3 is common for individual­
level data) and skewness and excess kurtosis will remain. 

Such skewed, thick-tailed data suggest a model with multiplicative errors instead of 
additive errors. A standard solution is to transform the dependent variable by taking 
the natural logarithm. Here this is complicated by the presence of 109 zero-valued 
observations. vVe take the expedient approach of dropping tne zero observations from 
analysis in either logs or levels. This should make little difference here because only 
3.6% of the sample is then dropped. A better approach, using two-part or selection 
models, is covered in chapter 16. 

The output for tabsta t in section 3.2 .5 reveals that taking the natural logarithm 
for these data essentially eliminates the skewness and excess kurtosis. 
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The user-written fsum command (Wolfe 2002) is an enhancement of su=arize that 
enables formatting the output and including additional information such as percentiles 
and variable labels. The user-written outsum command (Papps 2006) produces a text 
file of means and standard deviations for one or more subsets of the data, e.g. , one 
column for the full sample, one for a male subsample, and one for a female subsample. 

3.2.5 Tables for data 

One-way tables can be created by using the table command, which produces just 
frequencies, or the tabulate command, which additionally produces percentages and 
cumulative percentages; an example was given in section 3.2 . 3. 

Two-way tables can also be created by using these commands. For frequencies, ,mly 
table produces clean output. For example, 

• TYo-yay table of frequencies 
table female totchr 

=1 if 
female 

0 

0 
# of chronic problems 

2 3 4 5 

239 415 323 201 82 
313 466 493 305 140 

23 
46 

6 

4 
1 1  

7 

1 
2 

provides frequencies for a two-way tabulation of gender against the number of chronic 
conditions. The tabulate command is much richer. For example, 

• TYo-yay table Yith roY and column percentages and Pearson chi-squared 
tabulate female suppins, roY col chi2 

Key 

frequency 
roY percentage 

column percentage 

=1 if has supp priv 
=1 if insurance 
female 0 

0 488 800 
37.89 62 . 1 1  
38 .04 44.92 

795 981 
44.76 55 .24 
6 1 . 9 6  55 . 08 

Total 1 , 283 1 , 781 
41 .87  58 . 13  

100.00 100.00 

Pearson chi2( 1)  = 14.4991 

Total 

1 , 288 
100 .00 
42 . 04 

1 ,  776 
100 .00 
57 .96  

3 , 064 
10 0 . 00. 
100.00 

Pr � 0 . 000 
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Comparing the row percentages for this sample, we see that while a woman is more 
likely to have supplemental insurance than not, the probability that a woman in this 
sample has purchased supplemental insurance is lower than t!:J.e probability that a man 
in this sample has purchased supplemental insurance. Although we do not have the 
information to draw these inferences for the population, the results for Pearson's chi­
squared test soundly reject the null hypothesis that these variables are independent. 
Other tests of association are available. The related command tab2 will produce all 
possible two-way tables that can be obtained from a list of several variables. 

For multiway tables, it is best to use table. For the example at hand, we have 

• Three-way table of frequencies 
table female totcbr suppins 

= 1  if h a s  supp priv insurance and # of chronic 
problems 

=1 if 0 
female 0 2 3 4 5 6 7 

0 102 165 121 68 25 6 
135 212 233 134 56 22 2 

= 1 i f  has supp priv insurance and # of cbronic 
problems 

=1 if 1 
female 0 2 3 4 5 6 7 

0 I 137 250 202 133 57 17 3 
1 178 254 260 171 84 24 10  

An alternative is  to  use tabulate with the by prefix, but the results are not as neat as 
those from table. 

The preceding tabulations will produce voluminous output if one of the variables 
being tabulated takes on many values. Then it is much better to use table with the 
content s ( )  option to present tables that give key summary statistics for that variable, 
such as the mean and standard deviation. Such tabulations can be useful even when 
variables take on few values. For example, when summarizing the number of chronic 
problems by gender, table yields 

• One-way table of summary statistics 
. table female, contents(N  totcbr mean totcbr sd totcbr p50 totcbr) 

=1 if 
female 

0 

N (totcbr) mean(totchr) 

1 , 288 1 . 659937888 
1 , 776 1 . 822635135 

sd(totcbr) med(totchr) 

1 .  261175 1 
1 .  335776 2 
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Women on average have more chronic problems (1 .82 versus 1.66 for men) . The option 
content sO can produce many other statistics, including the minimum, maximum, and 
key percentiles. 

The table command with the contents ( )  option can additionally produce two-way 
and multiway tables of summary statistics. As an example, 

• Two-way table of summary statistics 
table female suppins, contents ( N  totchr mean totchr) 

-1 if 
female 

-1 if has supp priv 
insurance 

0 

0 488 
1 .  530737705 

795 

800 
1 . 73875 

981 
1 . 803773585 1 . 837920489 

shows that those with supplementary insurance on average have more chronic problems. 
This is especially so for males ( 1 .7 4 versus 1.53) . 

The tabulate , su=arize ()  command can be used to produce one-way and two­
way tables with means, standard deviations, and frequencies. This is a small subset of 
the statistics that can be produced using table, so we might as well use table. 

The tabsta t command provides a table of summary statistics that permits more 
flexibility than su=arize. The following output presents summary statistics on medical 
expenditures and the natural logarithm of expenditures that are useful in determining 
skewness and kurtosis. 

• Summary statistics obtained using command tabstat 
tabstat totexp l totexp, stat (count mean p50 sd skew kurt) col (stat) 

variable N mean p50 sd ske�omes s kurtosis 

totexp 3064 7030. 889 3134 . 5  11852.75 4 . 165058 26. 26796 
ltotexp 2955 8 . 059866 8 . 1 11928 1 . 367592 - . 3857887 3 . 842263 

This reproduces infor;:nation given in section 3.2.4 and shows that taking the natural 
logarithm eliminates most skewness and kurtosis. The col (stat )  option presents the 
results with summary statistics given in the columns and each variable being given in 
a separate row. Without this option, we would have summary statistics in rows and 
variables in the columns. A two-way table of summary statistics can be obtained by 
using the by()  option. 

( Continued on next page) 
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3.2.6 Statistical tests 

The ttest command can be used to test hypotheses about the population mean of a 
single variable (Ho : ll = tt* for speci:E.ed value ;t*) and to test the equality of means 
(Ho : !!I = 1J2) . For rr_ore general analysis of variance and analysis of covariance, the 
oneway and anova commands can be used, and several other tests exist for more special­
ized examples such as testing the equality of proportions. These commands are rarely 
used in microeconometrics because they can be recast as a special case of regression 
with an intercept and appropriate indicator variables. Furthermore, regression has the 
advantage of reliance on less restrictive distributional assumptions, provided samples 
are large enough for asymptotic theory to provide a good approximation. 

For example, consider testing the equality of mean medical expenditures for those 
with and without supplementary health insurance. The ttest totexp, by( suppins) 
unequal command performs the test but makes the restrictive assumption of a com­
mon variance for all those with suppins=O and a (possibly different) common variance 
for all those with suppins=l. An alternative method is to perform ordinary least­
squares (OLS) regression of totexp on an intercept and suppins and then test whether 
suppins has coefficient zero. Using this latter method, we can permit. all observations 
to have a different variance by using the vee (robust) option for regress to obtain 
heteroskedastic-consistent standard errors; see section 3.3.4. 

3.2.  7 Data plots 

It is useful to plot a histogram or a density estimate of the dependent variable. Here 
we use the kdensi ty command, which provides a kernel estimate of the density. 

The data are highly skewed, with a 97th percentile of approximately $40,000 and a 
maximum of $1 ,000,000. The kdensity totexp command will therefore bunch 97% of 
the density in the first 4% of the x axis. One possibility is to type kdensity totexp 
if totexp < 40000, but this produces a kernel density estimate assuming the data 
are truncated at $40,000. Instead, we use command kdensi ty totexp, we save the 
evaluation points in kx1 and the kernel density estimates in kd1, and then we line-plot 
kdl against kxl. 

We do this for both the level and the natural logarithm of medical expenditures, and 
we use graph combine to produce a figure that includes both density graphs (shown in 
figure 3 . 1 ) .  We have 

• Kernel density plots with adjustment for highly skewed data 
kdensity totexp if pos0xp= = l ,  generate (kxl kd1) n(SOO) 
graph twoway (line kdl kxl) if kxl < 40000, name (levels) 

kdensity ltotexp if posexp= = l ,  generate (kx2 kd2) n(500) 
graph twoway (line kd2 k x2) if kx2 < ln(40000) , name(logs) 
graph combine levels logs, iscale ( 1 . 0 )  
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Figure 3 . 1 .  Compari:;on of densities of level and natural logarithm of medical expendi­
tures 

Only positive exper.ditures are considered, and for graph rP.adahility, the very long 
right tail of totexp has been trnncatecl at $40,000. In figure 3 . 1 ,  the distribution of 
totexp is very right-skewed, whereas that of 1 totexp is fairly symmetric. 

3.3 Regression in i�veis a nd �ogs 

We present the linear reg1·ession model, first in levels and then for a transformed de­
pendent variable, here in logs. 

3.3.1 Basic regression theory 

We begin by introducing terminology used throughout the rest of tbis book. Let e 
denote the vector of parameters to be estimated, and let 8 denote an estimator of e. 
Ideally, the distribution of 8 is centered on e with small variance, for precision, and a 
known distribution, to permit statistical inference. We restrict analysis to estimators 
that are consistent for e, meaning that in infinitely large samples, 8 equals e aside 
from negligible random variation. This is denoted by 8 .£. e or more formnlly by 8 .£. 
8o, where eo denotes the unknown "true" parameter value. A necessary condition for 
consistency is correct model specification or, in some leading cases, correct specification 
of key components of the model, most notably the' conditional mean. 
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Under additional assumptions, the estimators considered in this book are asymptot­
ically normally distributed, meaning that their distribution is well approximated by the 
multivariate normal in large samples. This is denoted by 

where Var(e) denotes the (asymptotic) variance-covariance matrix of the estimator 
(veE). More efficient estimators have smaller VOEs. The VOE depends on unknown 
parameters, so we use an estimate of the VOE, denoted by V(e) .  Standard errors of the 
parameter estimates are obtained as the square root of diagonal entries in V(e). Differ­
ent assumptions about the data-generating proce::;::; (DGP), ::;uch as hetero::;kedasticity, 
can lead to different estimates of the VOE. 

Test statistics based on asymptotic normal re::;ults lead to the use of the standard 
normal distribution and chi-squared distribution to compute critical values and p-values. 
For some estimators, notably, the OLS estimator, tests are instead based on the t dis­
tribution and the F distribution. This makes essentially no difference in large samples 
with, say, degrees of freedom greater than 100, but it may provide a better approxima­
tion in smaller samples. 

3.3.2 OLS regression and matrix algebra 

The goal of linear regres::;ion is to e::;timate the parameter::; of the linear conditional mean 

E(ylx) = x' {3 = (31x1 + (Jzxz + · · · + {3 KXK (3 . 1 )  

where usually an intercept i s  included so that x 1  = 1 .  Here x is a J( x 1 column vector 
with the jth entry-the jth regressor x1-and {3 is a J{ x 1 column vector with the jth 
entry (Jj . 

Sometimes E(ylx) i::; of direct interest for prediction. More often, however, econo­
metric::; studies are interested in one or more of the associated marginal effects (ME::;), 

8E(ylx) 
_ 

:3 ·  
a - I  J Xj 

for the jth regressor. For example, we are interested in the marginal effect of supple­
mentary private health insurance on medical expenditm·es. An attraction of the linear 
model is that estimated iVIES are given directly by estimates of the slope coefficients. 

The linear regression model ::;pecifies an additive error ::;o that , for the typical ith 
observation, 

y.;, = x;p + u;,  i = 1 ,  . . . , N 

The OLS estimator minimizes the sum of squared errors, 2::;[::,1 (y, - x;f3f. 
Matrix notation provides a compact way to represent the estimator and variance 

matrix formulas that involve sums of products and cross products. We define the N x 1 



3.3.3 Properties of the OLS estimator 81 

column vector y to �ave the ith entry yi , and we define the N x [{ regTessor matrix X 
to have the ith row x; . Then the OLS estimator can be written in several ways, with 

j3 = (X'X)- 1X'y 

= ("-'� X;x:) - l  '\.'N XiYi L._....,oo: l L...,,,= 1 [ ��1 xi.; L�1 X1.;x2; 
' N N 

� =:�• x,,xu 2::,�, xl, 

Li=1 X!{i.Xh 

We define all vectors as column vectors, with a transpose if row vectors are desired. 
Dy contrast, Stata commands and Mata commands define vectors as row vectors. so in 
parts of Stata and Mata code, we need to take a transpose to conform to the notation 
in the book. 

3.3.3 Properties of the OLS estimator 

The properties of any estimator vary with the assumptions made about the DGP. For 
the linear regression model, this reduces to assumptions about the regression error ·u;. . 

The starting point for analysis is to assume that u; satisfies the following classical 
conditions: 

1 .  E(u, lxi )  = 0 (exogeneity of regressors) 

2. E(u;lx1 ) = CJ2 (conditional homoskedasticity) 

:3. E(u.;uJ ix; . xj) = 0, i :f j, (conditionally uncorrelated observations) 

Assumption 1 is essential for consistent estimation of {3 and implies that the condi­
tional mean given in (3 .1 ) is correctly specified. This means that the conditional mean h; 
linear and that all relevant variables have been included in the regression. Assumption 1 
is relaxed in chapter 6. 
� Assumptions 2 and :3 determine the form of the VCE of {3. Assumptions 1-3 lead to 
{3 being asymptotically normally distributed with the default estimator of the VCE 

Vdcrault{t3) = s 2(X'X) - 1 

where 
(3.2) 

and 11;. = Yi - x]3. Under assmnptions 1-3, the OLS estimator is fully efficient. If, 
additionally, u, is normally distributed, then "t statistics" are exactly t distributed. This 
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fourth assumption is not made, but it is common to continue to use the t distribution 
in the hope that it provides a better approximation than the standard normal in fi nite 
samples. 

When assumptions 2 and 3 are relaxed, OLS is no longer fully efficient. In chapter 5 ,  
we present examples of more-efficient feasible generalized least-squares (FGLS) estima­
tion. In the current chapter, we continue to use the OLS estimator, as is often done in 
practice, but we use alternative estimates of the VCE that are valid when assumption 
2, assumption 3, or both are rela.\:ed. 

3.3.4 Heteroskedasticity-robust standard errors 

Given assumptions 1 and 3, but not 2, we have heteroskedastic uncorrelated errors. 
Then a robust estimator, or more precisely a heteroskedastici<;y-robust estimator, of the 
VCE of the OLS estimator is 

�obust (,6) = (X'X) - l (NN_ k L; u;x;x:) (X'X) - l (3.3) 

For crm;t>-section data that are independent, this estimator, introduced by White ( 1980) , 
has supplanted the default variance matri..x estimate in most applied work because het­
eroskedasticity is the norm, and in that case, the default estimate of the VCE is incorrect . 

In Stata, a robust estimate of the VCE i� obtained by n�ing the vee (robust) option 
of the regress command, as illustrated in section 3.4 .2 .  Related options are vee (he2) 
and vee (he3) , which may provide better heteroskedasticity-robust estimates of the VCE 
when the sample size is small; see [R] regress. The robust estimator of the VCE has been 
extended to other estimators and models, and a feature of Stata is the vee (robust) op­
tion, which is applicable for many estimation commands. Some user-written commands 
use robust in place of vee (robus t ) .  

3.3.5 Cluster-robust standard errors 

When errors for different observations are correlated, assumption :3 is violated. Then 
both default and robust estimates of the VCE are invalid. For time-series data, this is 
the case if errors are serially correlated, and the newey command should be used. For 
cross-section data, this can arise when errors are clustered. 

Clustered or grouped errors are errors that are correlated within a cluster or group 
and are uncorrelated across clusters. A simple exatnple of clustering arises when sam­
pling is of independent units but errors for individuals within the unit are correlated. 
For example, 100 independent villages may be sampled, wib. several people from each 
village surveyed. Then, if a regression model overpredicts y for one village member, 
it is likely to overpredict for other members of the same village, indicating positive 
correlation. Similar comments apply when sampling is of households with several indi­
viduals in each household. Another leading example is panel data with independence 
over individuals but with correlation over time for a given individual. 
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Given assumption 1 ,  but not 2 or 3, a cluster-robust estimator of the VCE of the 
OLS estimator is 

� (7-i) (X'X) -1 ( G N - 1 "'  X � �� X' )  (X'X) - 1 
Vciustcr v = 

G _ l N _ k L_;0 gUg ug a 

where g = 1, . . .  , G denotes the cluster (such as village) ,  ii9 is the vector of residuals 
for the observations in the gth cluster, and Xg is a matrix of the regressors for the 
observations ' in the gth cluster. The key assumptions made are error independence 
across clusters and bat the number of clusters G ---> oo. 

Cluster-robust standard errors can be computed by using the vce( cluster clust­
vaT) option in Stata, where clusters are defined by the different values taken by the 
clustvaT variable. The estimate of the VCE is in fact heteroskedasticity-robust and 
cluster-robust ,  because there is no restriction on Cov( Ug.; , Uad ) . . The cluster VCE esti­
mate can be applied to many estimators and models; see section 9 .6 .  

Cluster-robust standard errors must be used when data are clustered. For a scalar 
regressor x, a rule of thumb is that cluster-robust standard errors are jl + PxPu (M - 1 )  
times the incorrect default standard errors, where p .£ i s  the within-clut>ter correlation 
coefficient of the regret>sor, Pu. is the within-cluster correlation coefficient of the errm·, 
and 1\1 is the average cluster size. 

It can be nece::>t>ary to ut>e clut>ter-robust standard errors even where it is not im­
mediately obvious. This is particularly the case when a regressor is an aggregated or 
macro variable, because then Px = 1. For example, suppose we use data from the U.S. 
Current Population Survey and regTess individual earnings on individual characteristics 
and a state-level regressor that does not vary within a state. Then, if there are many 
individuals in each stat-e so M is large, even slight error correlation for individuals 
in the same state can lead to gTeat downward bias in default standard errors and in 
heteroskedasticity-robust standard errors. Clustering can also be induced by the desig11 
of sample surveys. This topic is pursued in section 5 . . 5. 

3.3.6 Regression in logs 

The medical expenditure data are very right-skewed. Then a linear model in levels can 
provide very poor predictions because it restricts the effects of regressors to be additive. 
For example, aging 10 years is assumed to increase medical expenditures by the sam� 
amount regardless of observed health status. Instead, it is more reasonable to assume 
that aging 10 years has a multiplicative effect. For example, it may increase medical 
expenditures by 20%. 

We begin with an exponential mean model for positive expenditures, with error 
that is also multiplicative, so y,_ = exp(x�/3)E ;. · Defining c:, = exp(tt; ) ,  we have y,_ 
exp(x:,6 + u, ) , and taking the natural logarithm, we fit the log-linear model 

ln y; = x';,6 + u; 
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by OLS regression of ln y on x. The conditional mean of ln y is being modeled, rather 
than the conditional mean of y. In particular, 

E(ln yfx) = x' f3 

assuming w is independent with conditional mean zero. 

Parameter interpretation requires care. For regression of ln y on x, the coefficient i3J 
measures the effect of a change in regressor Xj on E(lnyfx) ,  but ultimate interest lies 
instead on the effect on E(yfx). Some algebra shows that f3J measures the proportionate 
change in E(yfx) as Xj changes, called a semielasticity, rather than the level of change 
in E(yfx). For example, if /3j = 0.02, then a one-unit change in Xj is associated with a 
proportionate increase of 0.02, or 2%, in E(yfx) .  

Prediction of E(yfx) is substantially more difficult because i t  can be shown that 
E(lnyfx) "I exp(x' {3). This is pursued in section 3.6.3. 

3.4 Basic regression analysis 

We ut>e regress to run an OLS regTession of the natural logarithm of medical expendi­
tures, 1 totexp, on suppins and several demographic and health-status measures. Using 
ln y rather than y as the dependent variable lead� to no change in the implementation of 
OLS but, as already noted, will change the interpretation of coefficients and predictions. 

Many of the details we provide in this section are applicable to all Stata estimation 
commands, not just to regress. 

3.4.1 Correlations 

Before regression, it ca..1 be useful to investigate pairwise correlations of the dependent 
variables and key regressor variables by using correlate. We have 

• Pairwise correlations for dependent variable and regressor variables 
. correlate ltotexp suppins phylim actlim totchr age female income 
(obs=2955) 

ltotexp suppins phylim actlim totchr age 

ltotexp 1 .  0000 
suppins 0 . 0941 1 . 0000 
phylim 0 . 2924 -0 . 0243 1 . 0000 
actlim 0 . 2888 - 0 . 0675 0 . 5904 1 . 0000 
totchr 0 . 4283 0 .  0124 0 . 3334 0 . 3260 1 . 0000 

age 0 . 0858 -0 . 1226 0 . 2538 0 . 2394 0 . 0904 1 . 0000 
female -0 . 0058 - 0 . 0796 0. 0943 0 . 0499 0 . 0557 0 . 0774 
income 0 . 0023 0 . 1943 -0 . 1 142 -0 . 1483 - 0 . 0816 -0 . 1542 

female income 

female 1 .  0000 
income -0 . 1312 1 . 0000 
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Niedical expenditures are most highly correlated with the health-status measures phylim, 
actlim, and totchr. The regressors are only weakly correlated with each other, aside 
from the health-status measures. Note that correlate restricts analysis to the 2,955 
observations where data are available for all variables in the variable list. The related 
command pwcorr, not demonstrated, with the sig option gives the statistical signifi­
cance of the correlations. 

3.4.2 The regress command 

The regress command performs OLS regression and yields an analysis-of-variance table, 
goodness-of-fit statistics, coefficient estimates, standard errors, t statistics, p-values, and 
confidence intervals. The synta..x of the command is 

regress depvar- [ indepvar-s ] [ if ] [ in ] [ weight ] [ , options J 

Other Stata estimation commands have similar syntaxes. The output from regress 
is similar to that from many linear regression packages. 

For independent cross-section data, the standard approach is to use the vee (robust) 
option, which gives standard errors that are valid even if model errors are heteroskedas­
tic; see section 3.3.4. In that case, the analysis-of-variance table, based on the assump­
tion of homoskedasticity, is dropped from the output. We obtain 

. • DLS regression with heteroskedasticity-robust standard errors 

. regress ltotexp suppins phylim actlim totchr age female income , vce (robust) 

Linear regression Number of obs = 2955 
F( 7 ,  2947) 126.97 
Prob > F 0 . 0000 
R-squared 0 . 2289 
Root MSE 1 .  2023 

Robust 
ltotexp Coef. Std. Err. t P> l t i [95l', Conf . Interval] 

suppins - .  .2556428 . 0465982 5 . 49 0 .000  . 1642744 . 3470112 
phylim . 3020598 . 057705 5 . 2 3  0 .  000 . 1889136 . 4 15206 
act lim . 3560054 . 0634066 5 . 61 0 . 000 . 2316797 .4803311 
totchr . 3758201 . 0187185 20 . 08 0 . 000 .3391175 . 4 125228 

age . 0038016 . 0037028 1 . 03 0 .305 - . 0034587 . 011062 
female - . 0843275 . 045654 - 1 . 85 0 . 065 - . 1738444 .0051894 
income . 0025498 .00 10468 . . 2 .44  0 .015  .0004973 . 0046023 

cons 6 . 703737 . 2825751 23.72 0.  000 6 . 149673 7 .  257802 

The regressors are jointly statistically significant, because the overall F statistic of 
126.97 has a p-value of 0.000. At the same time, much of the variation is unexplained 
with R2 = 0.2289. The root MSE statistic reports s ,  the standard error of the regression, 
defined in (3.2) . By using a two-sided test at level 0.0.5, all regressors are individually 
statistically significant because p < 0.05, aside from age and female. The strong 
statistical insignificance of age may be due to sample restriction to elderly people and 
the inclusion of several health-status measures that capture well the health effect of age. 
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Statistical significance of coefficients is easily established. More important is the eco­
nomic significance of coefficients, meaning the measured impact of regressors on medical 
expenditures. This is straightforward for regression in levels, because we can directly 
use the estimated coefficients. :iut here the regression is in logs. From section 3.3.6, in 
the log-linear model; parameters need to be interpreted as semielasticities. For example, 
the coefficient on suppins is 0.256. This means that private supplementary insurance 
is associated with a 0.256 proportionate rise, or a 25.6% rise, in medical expenditures. 
Similarly, large effects are obtained for the health-status measures, whereas health ex­
penditures for women are 8.4% lower than those for men after controlling for other 
characteristics. The income coefficient of 0.0025 suggests a very small effect , but this 
is misleading. The standard deviation of income is 22, so a 1-standard deviation in 
income leads to a 0.055 proportionate rise, or 5 . . 5% rise, in medical expenditures. 

MEs in nonlinear models are discussed in more detail in section 10.6. The preceding 
interpretations are based on calculus methods that consider very small changes in the 
regressor. For larger changes in the regressor, the finite-difference method is more 
appropriate. Then the interpretation in the log-linear model is similar to that for the 
exponential conditional mean model; see section 10.6.4. For example, the estimated 
effect of going from no supplementary insurance (supp ins=O) to having supplementary 
insurance (suppins=l) is more precisely a 100 x (e0·25G - 1) , or 29 .2%, rise. 

The regress command provides additional results that are not listed. In particular, 
the estimate of the VCE is stored in the matrix e (V) . Ways to acce."-S this and other 
stored results from regression have been given in section 1.6. Various postestimation 
commands enable prediction, computation of residuals, hypothesis testing, and model 
specification tests. Many of these are illustrated in subsequent sections. Two useful 
commands are 

• Display stored results and list available postestimation commands 
ereturn list 

(output omitted ) 

help regress postestimation 
(output omitted) 

3.4.3 Hypothesis tests 

The test command performs hypothesis tests using the Wald test procedure that uses 
the estimated model coefficients and VCE. We present some leading examples here, with 
a more extensive discussion deferred to section 12 .3 . The F statistic version of the Wald 
test is used after regress, whereas for many other estimators the chi-squared version 
is instead used. 

A common test is one of equality of coefficients. For example, consider testing that 
having a functional limitation has the same impact on medical expenditures as having 
an activity limitation. The test of Ho : .@phylim = .6actlim against Ha. : .@phylim 'f .6actlim is 
implemented as 
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• Wald test of equality of coefficients 
quietly regress ltotexp suppins phylim actlim totchr age female 

> income , vce (robust) 

test phylim = actlim 
( 1) phylim - actlim = 0 

F( 1 .  2947) = 0 . 2 7  
Prob > F = 0 . 6054 
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Becau::;e p = 0.61 > 0.05, we do not reject the null hypothesis at the 5% significance 
level . There is ito ::;tatistically significant difference between the coefficients of the two 
variables. 

The model can also be fitted ::;ubject to constraints. For example, to obtain the 
least-squares estimates subject to ;3phylim = i3actlim, we define the constraint using 
constraint define and then fi.t the model using cnsreg for constrained regression 
with the constraints ( )  option. See exercise 2 at the end of this chapter for an exam­
ple. 

Another common test is one of the joint statistical significance of a subset of the 
regressors. A test of the joint signifi cance of the health-status measures is one of Ho : 
,13phylim = 0, P'actlim = 0, JJtotchr = 0 against Ha. : at least one is nonzero. This is 
implemented a� 

. • Joint test of statistical significance o f  several variables 

. test phylim actlim totchr 
( 1) phylim = 0 
( 2) actlim = 0 
( 3) totchr = 0 

F( 3, 2947) 272.36 
Prob > F = 0 . 0000 

These three variables are jointly statistically significant at the 0.0.5 level because p = 
0.000 < 0.05. 

3.4.4 Tables of output from several regressions 

It is very useful to be able to tabulate key results from multiple regressions for both 
one's own analysis and final report writing. 

The estimates store command after regression leads to results in e 0 being as­
sociated with a user-provided model name and preserved even if subsequent models 
are fi tted. Given one or more such sets of stored estimates, estimates table presents 
a table of regTession coefficients (the default) and, optionally, additional results. The 
estimates stats command lists the sample size and several likelihood-based statistics. 

We compare the original regression model with .a variant that replaces income with 
educyr. The example uses several of the available options for estimates table. 
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. • Store and then tabulate results from multiple regressions 

. quietly regress ltotexp suppins phylim actlim totchr age female income, 
> vee (robust) 

. estimates store REGl 

. quietly regress ltotexp suppins phylim actlim totchr age female educyr , 
> vee (robust) 

estimates store REG2 
estimates table REGl REG2, b(/.9.4f)  se stats(N  r2 F 11) 

> keep(suppins income educyr) 

Variable REGl REG2 

suppins 0 .  2556 0 . 2063 
0 .  0466 0 .  0471 

income 0 . 0025 
0 .0010  

educyr 0 .  0480 
0 . 0070 

N 2955.0000 2955.0000 
r2 0 . 2289 0 . 2406 

F 126. 9723 132. 5337 
11 -4. 73e+03 -4. 71e+03 

legend: b/se 

This table presents coefficients (b) and standard errors ( se ) , with other available options 
including t statistics (t) and p-values (p). The statistics given are the sample size, 
the R2, the overall F statistic (based on the robust estimate of the VCE), and the 
log likelihood (based on the strong assumption of normal homoskedastic errors ) .  The 
keep ()  option, like the drop ( ) option, provides a way to tabulate results for just the key 
regressors of interest. Here educyr is a much stronger predictor than income, because it 
is more highly statistically significant and R2 is higher, and there is considerable change 
in the coefficient of suppins. 

3.4.5 Even better tables of regression output 

The preceding table is very useful for model comparison but has several limitations. It 
would be more readable if the standard errors appeared in parentheses. It would be . 
beneficial to be able to report a p-value for the overall F statistic. Also some work may 
be needed to import the table into a table format in external software such as Excel, 
Word, or �TEX. 

The user-written est tab command (Jann 2007) provides a way to do this, following 
the estimates store command. A cleaner version of the previous table is given by 
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. • Tabulate results using user-written command esttab to produce cleaner output 

. esttab REG1 REG2 , ·b( %10 .4f )  se scalars(N r2 F ll) mtitles 
> keep(suppins income educyr) title("  Model comparison of REG1-REG2 " )  

Model comparison o f  REG1-REG2 

suppins 

income 

educyr 

N 
r2 
F 
ll 

(1 )  
REGl 

0 .  2556•** 
( 0 . 0466) 

0 . 0025• 
( 0 . 0010) 

2955 
0 . 2289 

126. 9723 
-4733 .4476 

Standard errors in parentheses 

(2) 
REG2 

0 . 2063•** 
( 0 . 0471) 

0 . 0480•** 
( 0 . 0070) 

2955 
0 . 2406 

132. 5337 
-4710. 9578 

• p<O .OS ,  •• p<O . C 1 ,  •••  p<0 .001  
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Now standard errors are in parentheses, the strength of statistical significance is given 
using stars that can be suppressed by using the nostar option, and a title is added. 

The table can be written to a file that, for example, creates a table in �'I£X. 

• Write tabulated results to a file in latex table format 
quietly esttab REG1 REG2 using mus03table.tex,  replace b(/.10.4f)  se 

> scalars(N r2 F ll) mtitles keep( suppins age income educyr _cons) 
> title( "Model comparison of REG1-REG2 " )  

Other formats include . rtf for rich text format (Word) , . csv for comma-separated 
values, and . txt for fLxed and tab-delimited text. 

As mentioned earlier, this table would be better if the p-value for the overall F 
statistic were provided. This is not stored in e ( ) . However, it is possible to calculate 
the p-value given other variables in e ( ) . The user-written estadd command (.Jann 2005) 
allows adding this computed p-value to stored results that can then be tabulated with 
esttab. We demonstrate this for a smaller table to minimize output. 

• Add a user-calculated statistic to the table 
estimates drop REG1 REG2 

quietly regress ltotexp suppins phylim actlim totchr age female income, 
> vce (robust) 

estadd scalar pvalue � Ftail ( e (df_r) , e (df_m) , e (F ) )  
(output omitted) 

estimates store REG1 
quietly regress ltotexp suppins phylim actliW totchr age female educyr, 

> vee (robust) 
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estadd scalar pvalue = Ftail ( e (df_r) , e (df_m) , e ( F ) )  
(output omitted) 

estimates store REG2 

esttab REG1 REG2 , b(/.10 .4f)  se scalars(F pvalue) mtitles keep(suppins) 

( 1 )  (2) 
REG1 REG2 

suppins 0 .  2556*** 0 . 2063*** 
(0 . 0466) ( 0. 04 71) 

N 2955 2955 
F 126. 9723 132. 5337 
pvalue 0 . 0000 0 . 0000 

Standard errors in parentheses 
* p<0 . 0 5 ,  * *  p<0 . 0 1 ,  *** p<0.001 

The estimates drop command saves memory by dropping stored estimates that are no 
longer needed. In particular, for large samples the sample inclusion indicator e (sample)  
can take up much memory. 

Related user-written commands by Jann (2005, 2007) are est out, a richer but more 
complicated version of esttab, and eststo, which extends estimates store. Several 
P.l'l.rlic:r n::>er-written commands, notably, outreg, also create tables of regression output 
but are generally no longer being updated by their authors. The user-written reformat 
command (Brady 2002) allows formatting of the usual table of output from a single 
estimation command. 

3 .5  Specification ana lysis 

The fitted model has R2 = 0.23, which is reasonable for cross-section data, and most re­
gressors are highly statistically significant with the expected coefficient signs. Therefore, 
it is tempting to begin interpreting the results. 

However, before doing so, it is useful to subject this regression to some additional 
scrutiny because a badly misspecified model may lead to erroneous inferences. We 
consider several specification tests, with the notable exception of testing for regressor 
exogeneity, which is deferred to chapter 6. 

3.5 .1  Specification tests and model diagnostics 

In microeconometrics, the most common approach to deciding on the adequacy of a 
model is a Wald-test approach that fi ts a richer model and determines whether the data 
support the need for a richer model. For example, we may add additional regressors t o  
the model and test whether they have a zero coefficient. 
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Stata also presents the  user with an impressive and bewildering menu of choices of 
diagnostic checks for the currently fitted regression; see [R] regress postestimation. 
Some are specific to OLS regression, whereas others apply to most regression models. 
Some are visual aids such as plots of residuals against fitted values. Some are diagnostic 
statistics such as influence statistics that indicate the relative importance of individual 
observations. And some are formal tests that test for the failure of one or more assump­
tions of the model. We briefly present plots and diag11ostic statistics, before giving a 
lengthier treatment of specification tests. 

3.5.2 Residual diagnostic plots 

Diagnostic plots are used less in microeconometrics than in some other branches of 
statistics, for several reasons. First, economic theory and previous research provide a 
lot of guidance as to the likely key regressors and functional form for a model. Studies 
rely on this and shy away from excessive data mining. Secondly, microeconometric 
studies typically use large datasets and regressions with many variables. Many variables 
potentially lead to many diagnostic plots, and many observations make it less likely 
that any single observation will be very influential, unless data for that observation are 
seriously miscoded. 

We consider various residual plots that can aid in outlier detection, where an outlier 
is an observation poorly predicted by the model. One way to do this is to plot actual 
values agcunst fitted values of the dependent variable. The postestimation command 
rvfplot gives a transformation of this, plotting the residuals ui = Yi - fj; against the 
fi tted values Yi = x;/3. We have 

. * Plot of residuals against fitted values 

. quietly regress ltotexp suppins phylim actlim totchr age female income , 
> vce (robust ) -

. rvfplot 

0 
0 � ��----�--------r-------r-----�, 1 

9 
Flttod value::; 

1 0  1 1  

Figure 3 .2 .  Residuals plotted against fitted values after OLS regression 
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Figure 3.2 does not indicate any extreme outliers, though the three observations 
with a residual less than -5 may be worth investigating. To do so, we need to generate 
u by using the predict command, detailed in section 3.6, and we need to list some 
details on those observations with u < -5 . We have 

• Details on the outlier residuals 
predict uhat , residual 

predict yhat , xb 

list totexp ltotexp yhat uhat if uhat < -5 ,  clean 

1 .  
2 .  

totexp ltotexp yhat 
3 1 . 098612 7 . 254341 
6 1 . 791759 7 . 513358 

uhat 
-6 . 155728 
- 5 . 721598 

3 .  9 2 . 197225 7 . 631211 -5 .433987 

The three outlying residuals are for three observations with the very smallest total an­
nual medical expenditures of, respectively, $3 , $6, and $9 . The model evidently greatly 
overpredicts for these observations, with the predicted logarithm of total expenditures 
(yhat) much greater than ltotexp. 

Stata provides several other residual plots. The rvpplot postestimation command 
plots residuals against an individual regressor. The avplot command provides an added­
variable plot, or partial regression plot, that is a useful visual aid to outlier detection. 
Other commands give component-plus-residual plots that aid detection of nonlinearities 
and leverage plots. For details and additional references, see [R] regress postestima­
tion. 

3.5.3 I nfluential observations 

Some observations may have unusual iniluence in determining parameter estimates and 
resulting model predictions. 

Influential observations can be detected using one of several measures that are large 
if the residual is large, the leverage measure is large, or both. The leverage measure 
of the ith observation, denoted by h;, equals the ith diagonal entry in the so-called 
hat matrix H = X(X'X) -l X. If h, is large, then y,, has a big influence on its OLS 
prediction y; because y = Hy. Different measures, including h., can be obtained by 
using different options of predict. 

· 

A commonly used measure is dfits; , which can be shown to equal the (scaled) differ­
ence between predictions of y, with and without the ith observation in the OLS regression 
(so dfits means difference in fits) . Large absolute values of dfits indicate an influential 
data point. One can plot dfi ts and investigate further observz.tions with outlying values 
of dfits. A rule of thumb is that observations with ]dfitsl > 2 VkfH may be worthy of 
further investigation, though for large datasets this rule can suggest that many obser­
vations are influential. 

The dfi ts option of predict can be used after regress provided that regression 
is with default standard errors because the underlying theory presumes homoskedastic 
errors. We have 
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• Compute dfits that combines outliers and leverage 
quietly regress ltotexp suppins phylim actlim totchr age female income 
predict dfits, dfits 

scalar threshold � 2•sqrt ( ( e (df_m)+1)/e(N) )  
display "dfits threshold = " /.6.3f threshold 

dfits threshold = 0 . 104 

tabstat dfits, stat (min pi p5 p95 p99 max) format (/.9.3f)  col(stat) 
variable min p 1 p5 p95 p99 max 

dfits -0 .421 -0 . 147 - 0 . 083 0 . 085 0 . 127 0 .221  

list dfits totexp ltotexp yhat uhat if a bs(dfi ts) > 2•threshold & e( sample ) , 
> clean 

dfits totexp ltotexp yhat uhat 
1 .  . - .  2319179 3 1 . 098612 7 . 254341 - 6 . 155728 
2 .  - . 3002994 6 1 .  791759 7 . 5 13358 - 5 . 721598 
3 .  - . 2765266 9 2 . 197225 7 . 631211 -5. 433987 

10 .  - . 2 170063 30 3 . 401197 8 . 348724 -4 . 947527 
42 .  - . 2612321 103 4 . 634729 7 . 57982 -2 . 945091 
44 .  - . 4212185 110 4 . 70048 8 . 9 93904 -4. 293423 

108.  - . 2326284 228 5 . 429346 7 .971406 -2. 54206 
114 .  - . 2447627 239 5 .  476463 7 . 946239 -2 . 469776 
137. - . 2 177336 283 5 . 645447 7 . 929719 -2 . 284273 
2 1 1 .  - . 2 1 1344 415 6 . 028278 8 . 028338 -2. 00006 

2925. . 2207284 62346 1 1 . 04045 8 . 660131 2 . 380323 
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Here over 2% of the sample has lcl fits l  greater than the suggested threshold of 0.104. 
But only 11 observations have ldfi tsl gTeater than two times the threshold. These 
correspond to observations with relatively low expenditures, or in one case, relatively 
high expenditures . . vVe conclude that no observation has unusual influence. 

3.5.4 Specification tests 

Formal model-specification tests have two limitations. First , a test for the failure of 
a specific model assumption may not be robust with respect to the failure of another 
assumption that is -Ii.ot under test. For example, the rejection of the null hypothesis 
of homoskedasticity may be due to a misspecified functional form for the conditional 
mean. An example is given in section 3 . .5.5. Second, with a very large sample, even 
trivial deviations from the null hypothesis of correct specification will cause the test to 
reject the null hypothesis. For example, if a previously omitted regressor has a very 
small coefficient, say, 0.000001, then with an infinitely large sample the estimate will be 
sufficiently precise that we will always reject the null of zero coefficient. 

Test of omitted variables 

The most common specification test is to include additional regressors and test whether 
they are statistically significant by using a Wald test of the null hypothesis that the 
coefficient is zero. The additional regTessor may be a variable not already included, a 
transformation of a variable(s) already included such as a quadratic in age, or a quadratic 
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with interaction terms in age and education. If groups of regressors are included, such 
as a set of region dummies, test can be used after regress to perform a joint test of 
statistical significance. 

In some branches of biostatistics, it is common to include only regressors with p < 
0.05. In rnicroeconometrilli, it is common instead to additionally include regressors that 
are statistically insignificant if economic theory or conventional practice includes the 
variable as a control. This reduces the likelihood of inconsistent parameter estimation 
due to omitted-variables bias at the expense of reduced precision in estimation. 

Test of the Box-Cox model 

A common specifi cation-testing approach is to fit a richer model that tests the current 
model as a special case and perform a Wald test of the parameter restrictions that lead 
to the simpler model. The preceding omitted-variable test is an example. 

Here we consider a test specific to the current example. We want to decide whether 
a regression model for medic;:\l expenditures is better in logs than in levels. There is no 
obvious way to compare the two models because they have different dependent variables. 
However, the Box-Cox transform leads to a richer model that includes the linear and 
log-linear models as special cases. Specifically, we fit the model with the transformed 
dependent variable 

( ()) - yf - 1 
'(3 g Yi , = --8- = x; + u.; 

where () and (3 are estimated under the assumption that Ui � N(O, 0"2) .  Three leading 
cases are 1) g(y, ()) = y - 1 if e = 1 ;  2) g(y, ()) = __lny if () = 0; and 3) g(y, ()) = 1 - 1/y 
if () = -1 . The log-linear model is supported if () is close to 0, and the linear model is 
supported if e = 1. 

The Box-Cox transformation introduces a nonlinearity and an additional unknown 
parameter e into the model. This moves the modeling exercise into the domain of 
nonlinear models. The model is straightforward to fi t, however, because Stata provides 
the boxcox command to fit the model. We obtain 

. • Boxcox model �ith lhs variable transformed 
. boxcox totexp suppins phylim actlim totchr age female income if totexp>O, nolog 
Fitting comparison model 

Fitting full model 

Log likelihood = -28518. 267 

totexp 

/theta 

Cocf . Std. Err. 

. 0758956 . 0 096386 

Number of obs 
LR chi2(7) 
Prob > chi2 

2955 
773.02 

0 . 000 

z P> l z l  [95/. Conf . Interval] 

7 . 87 0 . 000 . 0570042 .0947869 
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Estimates of scale-variant parameters 

Coef . 

No trans 
suppins . 4459618 
pbylim .577317 
act lim . 6905939 
totcbr . 6754338 

�ge . 0051321 
female - . 1767976 
income . 0044039 

cons 8 . 930566 

/sigma 2 . 189679 

Te<::t Restricted LR statistic P-value 
HO: log likelihood chi2 Prob > chi2 

theta � -1 -37454.643 17872.75 0 . 000 
theta � 0 -28550 .353 64 . 17  0 . 000 
theta � -31762.809 6489 .08  0 . 000 

The null hypothesis of (] = 0 is strongly rejected, so the log-linear model is rejected. 
However, the Box-Cox model with general (] is difficult to interpret and use, and the 
estimate of e = 0.0759 gives much greater support for a log-linear model (8 = 0) than 
the linear model (8 = 1 ) .  Thus we prefer to use the log-linear model. 

Test of the functional form of the conditional mean 

The linear regression model specifies that the conditional mean of the dependent variable 
(whether measured in levels or in logs) equals x�(J. A standard test that this is the 
correct specification is a variable augmentation test. A common approach is to add 
powers of fj, = x;/3 , the fitted vabe of the dependent variable, as regressors and a test 
for the statistical significance of the powers. 

The estat ovtest postestimation command provides a RESET test that regTesses y 
on x and 1?, fP, and ft , and jointly tests that the coefficients off?, f?, and f/ are zero. 
We have 

. • Variable augmentation test of conditional mean using estat ovtest 

. quietly regress ltotexp suppins phylim actl)m totchr age female income , 
> vee (robust) 

. estat ovtest 
Ramsey RESET test using powers of the fitted values of ltotexp 

Ho: model has no omitted variables 
F ( 3 ,  2944) � 9 . 04 

Prob > F � 0 . 0000 

The model is strongly rejected because p = 0.000. 
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An alternative, simpler test is provided by the link test command. This regTesses y 
on fj and fP,  where now the original model regressors x are omitted, and it tests whether 
the coefficient of fP is zero. vVe have 

. • Link test of functional form of conditional -mean 

. quietly regress ltotexp suppins phylim actlim totchr age female income , 
> vce (robust) 

link test 
Source ss df MS 

Model 1301. 41696 2 650. 708481 
Residual 4223. 47242 2952 1 .  43071559 

Total 5524. 88938 2954 1 . 87030785 

ltotexp Coef . Std. Err. t 

_hat 4 . 429216 . 6779517 6 . 53 
_hatsq - . 2084091 .0411515 -5 .06 

cons -14 .01127 2 . 779936 -5 . 04 

P> l t l  

0 .000  
0 .  000 
0 . 000 

Number of obs 2955 
F(  2 ,  2952) 454 . 8 1  
Prob > F 0 . 0000 
R-squared 0 . 2356 
Adj R-squared = 0 . 2350 
Root MSE 1 . 1961 

[95/. Conf . Interval] 

3 . 09991 5 . 758522 
- . 2890976 - . 1277206 
-19 . 46208 -8. 56046 

Again the null hypothesis that the conditional mean i::; correctly specified is rejected. 
A likely rea::;on is that so few regre::;sors were included in the model. for pedagogical 
reasons. 

The two preceding commands had different formats. The first test used the estat 
ovtest command, where estat produces various statistics following estimation and the 
particular statistics available vary with the previous estimation command. The second 
test used linktest, which is available for a wider range of models. 

Heteroskedasticity test 

One consequence of heteroskedasticity is that default OLS standard errors are incorrect. 
This can be readily corrected and guarded against by routinely using heteroskeda::;ticity­
robust standard errors. 

Nonetheles[:;, there may be interest in formally te[:;ting whether heteroskedasticity is 
present . For example, the retransformation methods for the log-linear model used in 
b"ection 3.6.3 assume homosked astic errors. In section 5.3, we present diagnostic plots 
for heteroskedasticity. Here we instead present a formal test. 

A quite general model of heteroskedasticity is 
Var(yix) = h(a1 + z' a2) 

where h( - )  is a positive monotonic function such as e;-..1J ( -) and the variables in z are 
functions of the variables in x. Tests for heteroskedasticity are tests of 

Ho : az = 0 

and can be shown to be independent of the choice of function h( · ) . We reject H 0 at 
the a level if the test statistic exceeds the a critical value of a chi-squared distributivn 

J 
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with degrees of freedom equal to the number of components of z. The test is performed 
by using the estat hettest postestimation command. The simplest version is the 
Breusch-Pagan Lagrange multiplier test, which is equal to N times the uncentered 
explained sum of squares from the regression of the squared residuals on an intercept 
and z. We use the iid option to obtain a different versimi of the test that relaxes the 
default assumption that the errors are normally distributed. 

Several choices of the components of z are possible. By far, the best choice is to 
use variables that are a priori likely determinants of heteroskedasticity. For example, in 
regressing the level of earnings on several regressors including years of schooling, it is 
likely that those with many years of schooling have the greatest variability in earnings. 
Such candidates rarely exist. Instead, standard choices are to use the OLS fitted value 
y, the default for estat hettest, or to use all the regressors so z = x. White's test 
for heteroskedasticity is equivalent to letting z equal unique terms in the products and 
cross products of the terms in x. 

We consider z = fj and z = x. Then we have 

* Heteroskedasticity tests using estat hettest and option iid 
quietly regress l totexp suppins phylim actlim totchr age female ]ncome 
estat hettest ,  iid 

Breusch-Pagan I Cook-Weisberg test for heteroskedasticity 
Ho: Constant variance 
Variables :  fitted values of ltotexp 
chi2 (1 )  32 . 87 
Prob > chi2 = 0 . 0000 

estat hettest suppins phylim actlim totcbr age female income , iid 

Breusch-Pagan I Cook-Weisberg test for heteroskedasticity 
Ho:  Constant variance 
Variables :  snppins phylim actlim totcbr age female income 
chi2(7) 9 3 . 1 3  
Prob > chi2 = 0 . 0000 

Both versions of the test, with z = fj and with z = x, have p = 0.0000 and strongly 
reject homoskedasticity. 

Omnibus test 

An alternative to separate tests of rnisspecification is an omnibus test, which is a joint 
test of misspecification in several directions. A leading example is the information ma­
trix (IM) test (see section 12 .7) ,  which is a test for correct specification of a fully para­
metric model based on whether the IM equality holds. For linear regression with normal 
homoskedastic errors, the IM test can be shown to be a joint test of heteroskedasticity, 
skewness, and nonnormal kurtosis compared with the null hypothesis of homoskedas­
ticity, symmetry, and kurtosis coefficient of 3; see Hall (1987). 

The estat imtest postestimation command computes the joint IM test and also 
splits it into its three components. We obtain 
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* Information matrix test 
quietly regress l totexp suppins phylim actlim totchr age female income 
estat imtest 

Cameron & Trivedi ' s  decomposition of IM-test 

Source chi2 d.f p 

Heteroskedasticity 139.90 31 0 . 0000 
Ske!Jiless 3 5 . 11 7 0 . 0000 
Kurtosis 11 ,,96 0 . 0005 

Total 186.97 39 0 . 0000 

The overall joint IM test rejects the model assumption that y � N(x' ,B, a2I), because 
p = 0.0000 in the Total row. The decomposition indicates that all three assumptions 
of homoskedasticity, synunetry, and normal kmtosis are rejected. Note, however, that 
the decomposition assumes correct specification of the conditional mean. If instead the 
mean is misspecified, then that could be the cause of rejection of the model by the IM 
test . 

3.5.5 Tests have power an more than one d irection 

Tests can have power in more than one direction, so that if a test targeted to a particular 
type of model misspecification rejects a model, it is not necessarily the case that this 
particular type of model misspecification is the tmderlying problem. For example , a test 
of heteroskedasticity may reject homoskedasticity, even though the underlying cause 
of rejection is that the conditional mean is misspecified rather than that errors are 
heteroskedastic. 

To illustrate tbls example, we use the following simulation exercise. The DGP is one 
with homoskedastic normal errors 

Yi = exp( l + 0.25 X Xi + 4 X x? )  + U-i, 

X; � U(O, 1 ) ,  Ui � N(O, 1) 
We instead fit a model with a misspecified conditional mean function: 

We consider a simulation with a sample size of 50. We generate the regressors and 
the dependent variable by using commands detailed in section 4.2. We obtain 

• Simulation to show tests have power in more than one direction 
clear all 
set obs 50 

obs was 0 ,  now 50 

set seed 10101 
. generate x = runiformO II x - uniform ( 0 , 1 )  
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generate u = rnormal ()  // u _ N(0 , 1) 
generate y = exp( l" + 0 . 25•x + 4•x"2) + u 

generate xsq = x-2 
regress y :x xsq 

Source ss df MS Number of 
F( 2 ,  

Model 76293.9057 2 38146. 9528 Prob > F 
Residual 10654. 8492 47 226. 698919 R-squared 

obs 50 
47) 168.27 

0 . 0000 
0 . 8775 

Adj R-squared = 0 . 8722 
Total 86948. 7549 49 1774. 46438 Root MSE 1 5 . 057 

y Coef. Std. Err .  t P> l t l  [95/. Conf.  Interval] 

X -228. 8379 29 . 3865 -7 .79 0 . 000 -287 . 9559 -169.7199 
xsq 342.7992 28.71815 11 . 94  0 . 000 285 .0258 400. 5727 

_cons 28. 68793 6 . 605434 4 . 34 0 . 000 1 5 . 39951 4 1 . 97635 
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The misspecified model seems to fit the data very well with highly statistically significant 
regressors and an R2 of 0.88. 

Now consider a test for heteroskedasticity: 

, • Test for heteroskedasticity 
, estat hettest 
Breusch-Pagan I Cook-Weisberg test for heteroskedasticity 

Ho: Constant variance 
Variable s :  fitted values of y 

chi2( 1 )  22 . 70 
Prob > chi2 = 0 . 0000 

This test strongly suggests·that the errors are heteroskedastic because p = 0.0000, even 
though the DGP had homoskedastic errors. 

The problem is that the regTession function itself was misspecified. A RESET test 
yields 

• Test for misspecified conditional mean 
esta t ovtest 

Ramsey RESET test using powers of the fitted values of y 
Ho: model has no omitted variables 

F(3 ,  44) = 270 2 . 1 6  
Prob > F = 0 . 0000 

This strongly rejects correct specifi cation of the conditional mean because p = 0.0000. 

Going the other way, could misspecification of other features of the model lead to 
rejection of the conditional mean, even though the conditional mean itself was cor­
rectly specified? This is an econometrically subtle question. The answer, in general , is 
yes. However, for the linear regression model, this is not the case essentially because 
consistency of the OLS estimator requires only that the conditional mean be correctly 
specified. 
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3.  6 Prediction 

For the linear regression model, the estimator of the conditional mean of y given x = Xp, E(ylxp) = x�{3, is the conditional predictor y = �(3. We focus here on prediction for 
each observation in the sample. We begin with prediction from a linear model for medical 
expenditures, because this is straightforward, before turning to the log-linear model. 

Further details on prediction are presented in section 3. 7, where weighted average 
prediction is discussed, and in sections 10.5 and 10.6, where many methods are pre­
sented. 

3.6.1 In-sample prediction 

The most common type of prediction is in-sample, where evaluation is at the observed 
regressor values for each observation. Then Yi = x�(3 predicts E(yilxi) for i =  1, . . . , N. 

To do this, we use predict after regress .  The syntax for predict is 

predict [ type ] newvar [ if ] [ in ]  [ , options ] 

The user always provides a name for the created variable, nevrJar. The default option is 
the prediction y,,. Other options yield residuals (usual, standardized, and studentized), 
several leverage and infbential observation measures, predicted values, and associated 
standard errors of prediction. We have already used some of these options in section 3.5. 
The predict command can also be used for out-of-sample prediction. When used for 
in-sample prediction, it is good practice to add the if e (sample) qualifier, because this 
ensures that prediction is for the same sample as· that used in estimation. 

We consider prediction based on a linear regression model in levels rather than logs. 
We begin by reporting the regression results with totexp as the dependent variable. 

• Change dependent variable to level of positive medical expenditures 
use mus03data.d ta ,  clear 
keep if totexp > 0 

(109 observations deleted) 
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. regress totexp suppins phylim actlim totchr age female income , vce (robust) 
Linear regre ssion Number of obs 2955 

F (  7 ,  2947) 40 .58 
Prob > F 0 .  0000 
R-squared 0 . 1163 
Root MSE 11285 

Robust 
totexp Coef . Std. Err. t P> l t l  [95/. Conf . Interval] 

suppins 724.8632 427.3045 1. 70 0 . 090 -112 . 9824 1562 . 709 
phylim 2389 .019  544.3493 4 . 39 0 . 000 1321.675 3456 .362 
act lim 3900.491 705. 2244 5 . 53 0 . 000 2517.708 5283.273 
totcbr 1844.377 186. 8938 9 . 87 0 . 000 1477 .921  2210 . 832 

.age -85 .36264 3 7 . 8 1868 -2 .26 0 . 024 -159.5163 -11 . 20892 
female -1383.29 432 . 4759 -3 . 20 0 .  001 -2231. 275 -535. 3044 
income 6 . 46894 8 . 570658 0 . 75 0 .450 - 1 0 . 33614 23. 27402 

cons 8358.954 2847 .802 2 . 94 0 . 003 2775 .07 13942.84 

We then predict the level of medical expenditures: 

. * Prediction in model linear in levels 

. predict yhatlovcls 
(option xb assumed ; fitted values )  

summarize totexp ybatlcvels 
Variable 

totexp 
ybatlevels 

Dbs 

2955 
2955 

Mean 

7290. 235 
7290 . 235 

Std. Dev. Min 

11990.84 3 
4089. 624 -236.3781 

Max 

125610 
22559 
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The summary statistics show that on average the predicted value yhatlevels equals 
the dependent variable. This suggests that the predictor does a good job. But this is 
misleading because this is always the case after OLS regression in a model with an inter­
cept, since then residuals sum to zero implying L: y; = L fk  The standard deviation 
of yhatlevels is $4,090, so there is some variation in the predicted values. 

For this example, a more discriminating test is to compare the median predicted 
and actual values. We have 

* Compare median prediction and median actual value 
tabstat totexp ybatlevel s ,  stat (count p50) col(stat) 

variable 

totexp 
yhatlevels 

N p50 

2955 3334 
2955 6464.692 

There is considerable difference between the two, a consequence of the right-skewness 
of the original data, which the linear regression model does not capture. 

The stdp option provides the standard error of the prediction, and the stdf option 
provides the standard error of the prediction for each sample observation, provided the 
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original estimation command used the default VCE. We therefore reestimate without 
vee (robust) and use predict to obtain 

• Compute standard errors of prediction and forecast Yith default VCE 
quietly regress totexp suppins phylim actlim totchr age female income 

predict yhatstdp , stdp . 
predict yhatstdf , stdf 
summarize yhatstdp yhatstdf 

Variable 

yhatstdp I yhatstdf 

Dbs 

2955 
2955 

Mean 

572 . 7  
11300.52 

Std.  Dev. :ol in  Max 

129. 6575 393. 5964 2813.983 
10. 50946 11292.12 11630.8 

The first quantity views x'.73 as an estimate of the conditional mean <f3 and is quite 
precisely estimated because the average standard deviation is $573 compared with an 
average prediction of $7,290. The second quantity views x'.73 as an estimate of the actual 
value Y·i and is very imprecisely estimated because Yi. = x'.f3 + u, ,  and the error u, here 
has relatively large variance since the levels equation has s = 1 1285. 

More generally, microeconometric models predict poorly for a given individual, as 
evidenced by the typically low values of R2 obtained from regression on cross-section 
data. The::;e same models may nonetheless predict the conditional mean well, and it is 
this latter quantity that is needed for policy analysis that focuses on average behavior. 

3.6.2 Marginal effects 

The mfx postestimation command calculates MEs and elasticities evaluated at sample 
mean::;, along with associated standard errors and confidence intervals where relevant. 
The default is to obtain these for the quantity that is the default for predict. For 
many estimation commands, including regress, this is the conditional mean. Then 
mfx computes for each continuous regressor 8E(y]x)/ 8x, and for 0/1 indicator variables 
6E(yjx), evaluated at f3 = 73 and x = X:. 

For the linear model, the estimated ME of the jth regressor is jJJ , so there is no need 
to use mfx. But mfx can also be used to compute elasticities and semielasticities. For 
example, the eyex option computes the elasticity 8yf8x x (xfy) , evaluated at sample 
means, which equals jjj x ("x JIY) for the linear model. We have 

. • Comput.e elasticity for a specified regressor 

. quietly regress totexp suppins phylim actlim totchr age female income, 
> vce (robust) 
. mfx, varlist (totcbr) eyex 

Elasticities after regress 
y = Fitted values (predict) 

7290. 2352 

variable ey/ex Std. Err. z P> l z l  95/. c .  I .  

totchr . 457613 . 04481 10 .21  0 .000  .369793 . 545433 

X 

1 .  8088 
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A 1% increase in chronic problems is  associated with a 0.46% increase in medical ex­
penditures. The varlist (totchr) option restricts results to just the regressor totchr. 

The predict 0 option of mfx allows the computation of MEs for the other quantities 
that can be produced using predict. 

3.6.3 Prediction in logs: The retransformation problem 

Tl"ansformingthe dependent variable by taking the natural logarithm complicates pre­
diction. It is ea.:,:y to predict E(ln y lx) ,  but we are instead interested in E(ylx) because 
we want to predict the level of medical expenditures rather than the natural logarithm. 
The obvious procedure of predicting In y and taking the exponential is wrong because 
exp{E(ln y)_} i- E(y), just as, for example, jE(y2) i- E(y) .  

The log-linear model lny = x'f3 + u implies that y = exp(x'f3)exp(u). I t  follows 
that 

E(y; lx; ) = exp(x:f3)E{ exp( Ui) } 
The simplest prediction is exp(x:,B) ,  but this is wrong because it ignores the multiple 
E{exp(ui ) } .  I f it is assumed that u; � N(O, u'2"), then it can be shown that E{ exp(ui )}  = 
exp(0.5o·2 ) ,  which can be estimated by exp(0.5i72) , where 0: 2 i::; an  unbiased e::;timator 
of the log-linear regression model error. A weaker assumption is to assume that u; 
i s  independent and identically distributed, i n  which case we c.an c.om;istently eo:timate 
E{exp(u, ) }  by the sample average N-1 :2:::.:1 exp(uj ) ;  see Duan (1983). 

Applying these methods to the medical expe1�diture data yields 

* Prediction i� levels from a logarithmic model 
quietly regress lt3texp suppins phylim actlim totchr age female income 
quietly predict lyhat 
generate yhatYrong = exp(lyhat) 
generate yhatnormal = exp(lyhat) *exp ( O . S*e (rmse) -2 )  
quietly predict uhat , residual 
generate expuhat = exp(uhat) 
quietly summarize expuhat 

generate yhatd·.1an = r(mean)*exp(lyhat) 
summarize totexp yhatYrong yhatnormal yhatduan yhatlevels 

Variable Dbs Mean Std. Dev. Min 

totexp 2955 7290 .235 11990.84 3 
yhatYrong 2955 4004. 453 3303.555 959.5991 

yhatnormal 2955 8249 .927 6805.945 1976.955 
yhatduan 2955 8005.522 6604 : 318 1918 .387 

yhatlevels ' 2955 7290 .235 4089. 624 -236.3781 

Max 

125610 
37726.22 
77723 . 13 
75420 .57 

22559 

Ignoring the retransformation bias leads to a very poor prediction, because yhatwrong 
has a mean of $4,004 compared with the sample mean of $7,290. The two alterna­
tive methods yield much closer average values o($8,250 and $8,006. Furthermore, the 
predictions from log regression, compared with those in levels, have the desirable fea-
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ture of always being positive and have greater variability. The standard deviation of 
yhatnorma1, for example, is $6,806 compared with $4,090 from the levels model. 

3.6.4 Prediction exercise 

There are several ways that predictions can be used to simulate the effects of a policy 
experiment. We consider the effect of a binary treatment, whether a person has supple­
mentary insurance, on medical expenditure. Here we base our predictions on estimates 
that assume supplementary insurance is exogenous. A more thorough analysis could 
instead use methods that more realistically permit insurance to be endogenous. As we 
discuss in section 6 .2 . 1 ,  a variable is endogenous if it is related to the error term. Our 
analysis here assumes that supplementary insurance is not related to the error term. 

An obvious comparison is to compare the difference in sample means (1h � y0) , 
where the subscript 1 denotes those with supplementary insurance and the subscript 
0 denotes those without supplementary insurance. This measure does not control for 
individual characteristics. A measure that does control for individual characteristics is 
the difference in mean predictions G/1 � y0) ,  where, for example , y1 denotes the average 
prediction for those with health insurance. 

We implement the first two approaches for the complete sample based on OLS re­
gTession in levels and in logs. vVe obtain 

• Predicted effect of supplementary insurance: methods 1 and 2 
bysort suppin s :  summarize totexp yhatlevels yhatduan 

-> suppins � 0 
Variable Dbs Mean Std. Dev. 11in Max 

totexp 1207 6824.303 11425 .94 9 104823 
yhatlevels 1207 6824.303 4077 .064 -236.3781 20131.43 

yhatduan 1207 6745 .959 5365.255 1918. 387 54981 . 73 

-> suppins � 1 
Variable Dbs Moan Std. Dev. l1in Max 

totexp 1748 7611 .963  12358.83 3 125610 
yhatlevels 1748 7611 .963 4068.397 502. 9237 22559 

yhatduan . 1748 8875 .255 7212.993 2518.538 75420.57 

The average difference is  $788 (from 7612 � 6824) using either the difference in  sample 
means or the difference in fi tted values from the linear model. Equality of the two 
is a consequence of OLS regTession and prediction using the estimation sample. The 
log-linear model, using the prediction based on Duan's method, gives a larger average 
difference of $2,129 (from 8875 � 6746). 

A third measure is the difference between the mean predictions, one with suppins 
set to 1 for all observations and one with suppins = 0. For the linear model, this is 
simply the estimated coefficient of suppins, which is $725. 
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For the log-linear model, we need to make separate predictions for each individual 
with suppins set to 1 and with suppins set to 0. For simplicity, we make predictions 
in levels from the log-linear model assuming normally distributed errors. To make these 
changes and after the analysis have suppins returned to its original sample values, we 
use preserve and :restore (see section 2.5.2) . We obtain· 

• Predicted effect of supplementary insuranc e :  method 3 for log-linear model 
quietly regress ltotexp suppins phylim actlim totcbr age female income 
preserv.e 

quietly replace su ppins = 1 
quietly predict lyhat1 

generate yhatnormal1 = exp(lyhat1 ) •exp(0. 5•e (rmse ) " 2 )  

quietly replace suppins = 0 
quietly predict lyhatO 

generate yhatnormalO = exp(lyhatO) •exp ( 0 . 5•e (rmse) -2) 
generate treateffect = yhatnormal1 - yhatnormalO 
summarize yhatnormal1 yhatnormalO treateffect 

Variable Obs Mean Std. D ev.  Min Max 

yhatnormall 
yhatnormalO 
treateffect 

. restore 

2955 
2955 
2955 

9077 . 072 
7029 . 453 
2047 . 6 1 9  

7313.963 2552. 825 77723 . 13 
5664 .069 1976.955 60190.23 
1649. 894 575. 8701 17532 . 9 1  

While the average treatment effect of  $2,048 i s  considerably larger than that obtained 
by using the difference in sample means of the linear model, it is comparable to the 
estimate produced by Duan's method. 

3.7 Sampling weights 

The analysis to date has presumed simple random sampling, where sample observations 
have been drawn from the population with equal probability. In practice, however, 
many microeconometric studies llSe data from surveys that are not representative of 
the population. Instead, groups of key intere::;t to policy makers that would have too 
few observations in a purely random sample are oversampled, with other groups then 
undersampled. Examples are individuals from racial minorities or those with low income 
or living in sparsely populated states. 

As explained below, weights should be used for estimation of population means and 
for postregression prediction and computation of MEs. However, in most cases, the 
regTession itself can be fitted without weights, as is the norm in microeconometric::>. If 
weighted analysis is desired, it can be done .using standard commands with a weighting 
option, which is the approach of this section and the standard approach in microecono­
metrics. Alternatively, one can use survey commands as detailed in section 5.5. 
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3.7 .1  Weights 

Sampling weights are provided by most survey datasets. These are called probability 
weights or pweights in Stata, though some others call them inverse-probability weights 
because they are inversely proportional to the probability of inclusion of the sample. A 
pweight of 1,400 in a survey of the U .S. population, for example, means that the obser­
vation is representative of 1,400 U.S. residents and the probability of this observation 
being included in the sample is 1/1400. 

Most estimation commands allow probability weighted estimators that are obtained 
by adding [pweight=weight] , where weight is the name of the weighting variable. 

To illustrate the use of sampling weights, we create an artificial weighting variable 
(sampling weights are available for the lv!EPS data but were not included in the data, 
extract used in this chapter) . We manufacture weights that increase the weight given to  
those with more chronic problems. In  practice, such weights might arise if the original 
sampling framework oversampled people with few chronic problems and tmdersampled 
people with many chronic problems. In this section, we analyze levels of e:h.rpenditures, 
including expenditures of zero. Specifically, 

• Create artificial sampling Yeights 
use mus03data.d ta, clear 

generate sYght = totchr-2 + 0 . 5  
summarize sYgh t 

Variable Dbs Mean 

SYght I 3064 5 . 285574 

Std. Dev. Min Max 

6 . 029423 . 5  4 9 . 5  

What matters in subsequent analysis is the relative values of the sampling weights rather 
than the absolute values. The sampling weight variable swght takes on values from 0.5 
to 49.5 ,  so weighted analysis will give some observations as much as 49.5/0.5 = 99 times 
the weight given to others. 

Stata offers three other types of weights that for most analyses can be ignored. 
Analytical weights, called aweights, are used for the quite different purpose of compen­
sating for different observations having different variances that are known up to scale; 
see section 5.3.4. For duplicated observations, fweights provide the munber of dupli­
cated observations. So-called importance weights, or iweights, are sometimes used in 
more advanced progTamming. · 

3. 7.2 Weighted mean 

If an estimate of a population mean is desired, then we should clearly weight. In this 
example, by oversampling those with few chronic problems, we will have oversampled 
people who on average have low medical expenditmes, so that the unweighted sample 
mean will understate population mean medical expenditures. 
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Let Wi be the population weight for individual i. Then, by defining W = L;;-:1 w; 

to be the sum of the weights, the weighted mean Yw is 

1 N 
Yw = 

W 2...::: Wi.Yi i.= l 
with variance estimator (assuming independent observations) V(Y"w) = {1/W(W - 1 ) }  ��� Wi(Y, - Yw ) 2 . These formulas reduce to  those for the unweighted mean i f  equal 
weights are used. 

The weighted mean downweights oversampled observations because they will have a 
value of pweights (and hence w; ) that is smaller than that for most observations. We 
have 

• Calculate the �eighted mean 
mean totexp [pYeight=�Yght] 

Mean estimation Number of obs 3064 

totexp 

Mean Std. Err . 

10670 . 8 3  428 . 5148 

[95/. Conf . Interval] 

9830.62 11511 .03  

The weighted mean of $ 10,671 is much larger than the unweightcd mean of $7,031 (see 
section 3.2.4) because the unweighted mean does not adjust for the oversampling of 
individuals with few chronic problems. 

3.7.3 Weighted regression 

The weighted least-squares estimator for the regression of Yi on Xi with the weights Wi 
is given by 

The OLS estimator is the special case of equal weights with w; = Wj for all i and j .  
The default estimator of  the VCE i s  a weighted version of the heteroskedasticity-robust 
version in (3.3) , which assumes independent observations. If observations are clustered, 
then the option vce(cluster clustvar) should be used. 

Although the weighted estimator is easily obtained, for legitimate reasons many 
microeconometric analyses do not use weighted regression even where sampling weights 
are available. We provide a brief explanation of this conceptually difficult issue. For a 
more complete discussion, see Cameron and Trivedi (2005, 818-82 1) .  

Weighted regression should be used if  a censuS parameter estimate is  desired. For 
example, suppose we want to obtain an estimate for the U.S.  population of the average 
change in earnings associated with one more year of schooling. Then, if disadvantaged 
minorities are oversampled, we most likely will understate the earnings increase, because 
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disadvantaged minorities are likely to have earnings that are lower than average for their 
given level of schooling. A second example is when a&,o-rega;;e state-level data are used 
in a natural experiment setting, where the goal is to measure the effect of an exogenous 
policy change that affects some states and not other states. Intuitively, the impact on 
more populous states should be given more weight . Note that these estimates are being 
given a correlative rather than a causal interpretation. 

Weighted regression is not needed if we make the stronger assumptions that the DGP 
is the specified model Yi = x'.f3 + Ui and sufficient controls are assumed to be added 
so that the error E(u; jx;) = 0. This approach, called a control-function approach 
or a model approach, is the approach usually taken in microeconometric studies that 
emphasize a causal interpretation of regression. Under the assumption that E( u , jx,) = 
0, the weighted least-squares estimator will be consistent for f3 for any choice of weights 
including equal weights, and if u, is homoskedastic, the most efficient estimator is the 
OLS estimator, which uses equal weights. For the assumption that E(ui jx ,) = 0 to be 
reasonable, the determinants of the sampling frame should be included in the controls x and should not be directly determined by the dependent variable y. 

These points carry over directly to nonlinear regression models. In most cases, mi­
croeconometric analyses take on a model approach. In that. case, unweighted estimation 
i� appropriate, with any weighting based on efficiency grounds. If a census-parameter 
approach is being taken, however, then it is necessary to weight. 

For our data example, we obtain 

. • Perform 1.1eighted regression 

. regress totexp suppins phylim actlim totchr age female income [pYeight=sygbt] 
(sum of 1.1gt is 1 .  6195e+04) 
Linear regression Nwnber of obs 3064 

F (  7 ,  3056) 14 .08  
Prob > F 0 . 0000 
R-squared 0 . 0977 
Root MSE 13824 

Robust 
totexp Coef . Std. Err. t P> l t l  [95/. Conf. Interval] 

suppins 278. 1578 825. 6959 0 .34  0 . 736 -1340.818 1897 .133 
phylim 2484.52 933.7116 2 . 6 6  0 . 008 653.7541 4315.286 
actlim 4271 .154 1024. 686 4 . 17 0 . 000 2262 . 0 1 1  6280 .296 
totchr 1819.929 349. 2234 5 . 2 1  0 . 0 0 0  1135 .193 2504 .666 

age -59.3125 68 . 01237 -0 . 87 0 . 383 -192.6671 74.04212 
female -2654 .432 911 . 6422 - 2 . 9 1  0 . 004 -4441 .926 -866. 9381 
income 5 . 042348 1 6 . 6509 0 .30 0 .762 -27. 60575 37 . 69045 

cons 7336. 758 5263.377 1 . 39 0 . 163 -2983 . 359 17656.87 

The estimated coefficients of all statistically significant variables aside from f emale are 
within 10% of those from unweighted regression (not given for brevity) . Big differences 
between weighted and unweighted regression would indicate that E( u.ijx.i) =f. 0 because 
of model misspecifi cation. Note that robust standard errors are reported by default. 
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3.7.4 Weighted prediction and M Es 

After regression, unweighted prediction will provide an estimate of the sample-average 
value of the dependent variable. We may instead want to estimate the population-mean 
value of the dependent variable. Then sampling weights ·should be used in forming an 
average prediction. 

This point is particularly easy to see for OLS regression. Because 1/ N l:;(Y·i. -fj;) = 0, since in-sample residuals sum to zero if an intercept is included, the average 
prediction 1/N 2::., Yi equals the sample mean fj. But given an unrepresentative sample, 
the unweighted sample mean fj may be a poor estimate of the population mean. Instead, 
we should use the weighted average prediction 1/N l::,: w/if., ,  even if fj; is obtained by 
using unweighted regression. 

For this to be useful, however, the prediction should be based on a model that 
includes as regressors variables that control for the unrepresentative sampling. 

For our example, we obtain the weighted prediction by typing 

• Weighted prediction 
quietly predict yhatYol s  
mean yhatYols [pYeight=syght] , noheader 

yhatYols 

Mean Std. Err. 

10670.83 138. 0828 

[95Yo Conf. Interval] 

10400 .08  10941.57 

mean yhatYols , noheader II unYeighted prediction 

yhatYols 

Mean Std. Err. 

7135.206 78 . 57376 

[95/. Conf . Interval] 

698 1 . 144 7289 .269 

The population mean for medical expenditures is predicted to be $10,671 using weighted 
prediction, whereas the unweighted prediction gives a much lower value of $7,135. 

Weights similarly should be used in computing average MEs. For the linear model, 
the standard ME EJE(y dXi )  /OXij equals /3j for all observations, so weighting will make 
no difference in computing the marginal effect . Weighting will make a difference for 
averages of other marginal effects, such as elasticities, and for IVIEs in nonlinear models. 

3.8 OLS using Mata 

Stata offers two different ways to perform computations using matrices: Stata matrix 
commands and Mata functions (which are discussed, respectively, in appendices A 
and B) .  

Mata, introduced in Stata 9, i s  much richer. We illustrate the use of  Mata by using 
the same OLS regression as that in section 3.4.2 . 
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The progTam is written for the dependent variable provided in the local macro y and 
the regressors in the local macro xlist. We begin by reading in the data and defining 
the local macros. 

• OLS with White robust standard errors using Mata 
use mus03data.dta, clear 

keep if totexp > 0 II Analysis for positive medical expenditures only 
(109 observations deleted) 

generate cons = 1 

local y ltotexp 

local xlist suppins phylim actlim totchr age female income cons 

We then move into Mata. The st_view()  Mata function is used to transfer the Stata 
data variables to Mata matrices y and X, with tokens ( " " ) added to convert 'xlist · 
to a comma-separated list with each entry in double quotes, necessary for st_ view C ) .  

The key part of the program forms {3 = (X'X)- 1X'y and V({j) = (N/ N - K) 
(X'X)-1 (�.i urx;x�) (X'X)- 1 . The cross-product function cros s ( X , X) is used to form 
X'X because this handles missing values and is more efficient than the more obvious X '  X. 
The matrix inverse is formed by using cholinv O because this is the fastest method in 
the special case that the matrix is  symmetric positive definite. We calculate the K x K 
matrix L; urxix; as l::, (u.,x;) ' (u;x;) = A' A, where the N X K matrix A has an ith 
row equal to u;x;. Now u;:< equals the ith row of the N X 1 residual vector u times the 
ith row of the N x K regressor matrix X, so A can be computed by element-by-element 
multiplication of u by X, or ( e : *X ) ,  where e is u. Alternatively, L; u;x,x; = X'DX, 
where D is an N X N diagonal matrix with entries u;, but the matrix D becomes 
exceptionally large, unnecessarily so, for a large N.  

The Mata program concludes by using st . .ma trix ( ) to pass the estimated {3 and 
V({j) back to Stata. 

mata 
--------------------- mata (type end to exit) --

11 Create y vector and X matrix from Stata dataset 
st_ view ( y= . , . , " ·  y · " )  I I y is nx1 

st_ vie" Cx� . ,  . , tokens ( "  · xlist · " ) )  I I X is nxk 
XXinv = cholinv(cross ( X , X ) )  

b = XXinv•cross(X ,y )  
o = y - X•b 
n = roYs(X) 

k � cols(X) 

s2 = (e "e )l (n-k) 

II XXinv is inverse of x · x  
I I b = [ (X"X)--1)  • x ·y 

vdef = s2•XXinv II default VCE not used here 

VYhite = XXinv• ( (e : •X) " ( e :•X) • nl(n-k)) •XXinv II robust VCE 
st_matri x( "b " , b " )  

st_matrix ( "V" , VYhite) 
end 

II pass results from Mata to Stata 
II pass results from Mata to Stata 
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Once back in Stata, we use ereturn to  display the results in a format similar to  that 
for built-in commands, first assigning names to the cohunns and rows of b and V . 

. • Use Stata ereturn display to present nicely formatted results 
matrix colnames b � "xlist ' 
matrix colnames V = "xlist·  
matrix roYnames V = "xlist' 
ereturn post b V 
ereturn display 

Coef . Std. Err. z P> l z l  [95/. Conf . 

sup pins .2556428 . 0465982 5 . 49 0 .000 . 1643119 
phylim . 3020598 . 057705 5 . 23 0 .  000 . 18896 
ac:tlim .3560054 . 0634066 5 . 6 1  0 . 000 . 2317308 
totchr .3758201 . 0187185 20 .08 0 . 000 . 3391326 

age . 0038016 . 0037028 1 . 03 0 . 305 - .  0034558 
female - . 0843275 . 045654 -1 .85  0 . 065 - . 1738076 
income . 0025498 .0010468 2 . 44 0 . 015 . 0004981 

cons 6. 703737 .2825751 23.72 0 . 000 6 . 1499 

Interval] 

. 3469736 

.4 151595 
. 48028 

.4125077 
.011059 

.0051526 

. 0046015 
7 . 257575 

The results are exactly the same as those given in section 3.4.2. when we used regress 
with the vee (robust) option. 

3.9 Stata resources 

The key Stata references are [u] User's Guide and [R] regress ,  [R] regress postes­
timation, [R] estimates, [R] predict, and [R] test. A useful user-written command 
is estout. The material in this chapter appears in many econometrics texts, such as 
Greene (2008). 

3.10 Exerdses 

1. Fit the model in section 3.4 using only the first 100 observations. Compute stan­
dard errors in three ways: default, heteroskedastic, and cluster-robust where 
clustering is on the number of chronic problems. Use estimates to produce a 
table with three sets of coefficients and standard errors, and comment on any 
appreciable differences in the standard errors. Construct a similar table for three 
alternative sets of heteroskedasticity-robust standard errors, obtained by using the 
vee (robust) , vee (hc2 ) ,  and vee (hc3) options, and comment on any differences 
between the different estimates of the standard errors. 

2. Fit the model in section 3.4 with robust standard errors reported. Test at 5% 
the joint significance of the demogTaphic variables age, female, and income. Test 
the hypothesis that being male (rather than female) has the same impact on 
medical expenditures as aging 10 years. Fit the model under the constraint that 
/3phylim = f3actlim by first typing constraint 1 phylim = actlim and then by using 
cnsreg with the constraint s ( l )  option. 
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3. Fit the model in section 3.5 ,  and implement the RESET test manually by regressing 
y on x and ff, f?, and ft and jointly testing that the coefficients of ff,  f?,  and ?r 
are zero. To get the same results as estat ovtest, do you need to use default or 
robust estimates of the VCE in this regression? Comment. Similarly, implement 
linktest by regressing y on fj and fl" and testing that the coefficient of fl" is 
zero. To get the same results as linktest, do you need to use default or robust 
estimates of the VCE in this regression? Comment. 

4. Fit the model in section 3.5 ,  and perform the standard Lagrange multiplier test 
for heteroskedasticity by using estat hettest with z = x. Then implement the 
te&t manually as 0.5 times the explained sum of squares from the regTession of y; 
on an intercept and z,., where Yi = {u; /(1/ N) Lj U:J} - 1 and u; is the residual 
from the original OLS regression. Next use estat hettest with the iid option 
and show that this test is obtained as N x R2, where R2 is obtained from the 
regression of uz on an intercept and Zi· 

5. Fit the model in section 3.6 on levels, except use all observations rather than 
those with just positive expenditures, and report robust standard errors. Predict 
medical expenditures. Use correlate to obtain the correlation coefficient between 
the actual and fitted value and show that, upon squaring, tbjs equals R2. Show 
that the linear model mfx without options reproduces the OLS coefficients. Now 
use mfx with an appropriate option to obtain the income elasticity of medical 
expenditures evaluated at sample means. 

6. Fit the model in section 3.6 on levels, using the first 2,000 observations. Use these 
estimates to predict medical expenditures for the remaining 1 ,064 observations, 
and compare these with the actual values. Note that the model predicts very 
poorly in pa.rt because the data were ordered by totexp. 


