
2 Data management and gra phics 

2.1 Introduction 

The starting point of an empirical investigation based on microeconomic data is the col­
lection and preparation of a relevant dataset. The primary sources are often government 
surveys and administrative data. vVe assume the researcher has such a primary dataset 
and do not address issues of survey design and data collection. ·  Even given primary 
data, it is rare that it will be in a form that is exactly what is required for ultimate 
analysis. 

The process of transforming original data to a form that is suitable for econometric 
a.•1alysisis referred to as data management. This is typically a time-intensive task that 
has important implication:; for the quality and reliability of modeling carried out at the 
next stage. 

This process usually begins with a data file or fi les containing basic information 
extracted from a census or a sm"Vey. They are often organized by. data record for a 
sampled entity such as an individual, a household, or a fi rm. Each record or observation 
is a vector of data on the qualitative and quantitative attributes of each individual. 
Typically, the data need to be cleaned up and recoded, and data from multiple sources 
may need to be combined. The focus of the investigation might be a particular group 
or subpopulation, e.g. , employed women, so that a series of criteria need to be used 
to determine whether a particular observation in the dataset is to be included in the 
analysis sample. 

In this chapter; we present the tasks involved in data preparation and management. 
These include reading in and modifying data, transforming data, merging data, checking 
data, and selecting an analysis sample. The rest of the book focuses on analyzing a given 
sample, though special features of handling panel data and multinomial data are given 
in the relevant chapters. 

2.2 Types of data 

All data are ultimately stored in a computer as a sequence of Os and ls because comput­
ers operate on binary digits, or bits, that are either 0 or 1. There are several different 
ways to do this, with potential to cause confusion. 

29 
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2 .2 . 1  Text or  ASC I I  data 

A standard text forma� is ASCII, an acronym for American Standard Code for Infor­
mation Interchange. Regular ASCII represents 27 = 128 and extended ASCII represents 
2s 

= 256 different digits, letters (uppercase and lowercase) , and common symbols and 
punctuation marks. In either case, eight bits (called a byte) are used. As examples, 1 
is stored as 00110001, 2 is stored as 00110010, 3 is stored as 00110011, A is stored as 
01010001, and a is stored as 00110001. A text fi le that is readable on a computer screen 
is stored in ASCII. 

A leading text-file example is a spreadsheet file that has been stored as a "comma­
separated values" file, usually a file with the . csv extension. Here a comma is used to 
separate each data value; however, more generally, other separators can be used. 

Text-file data can also be stored as fixed-width data. Then no separator is needed 
provided we use the knowledge that, say, columns 1-7 have the fi.rst data entry, columns 
8-9 have the second data entry, and so on. 

Text data can be numeric or nonnumeric. The letter a is clearly nonnumeric, but 
depending on the context, the number 3 might be numeric or nonnumeric. For example, 
the number 3 might represent the number of doctor visits (numeric) or be part of a street 
address, such as 3 Main Street (nonnumeric ) . 

2.2.2 I nternal numeric data 

When data are numeric, the computer stores them internally using a format different 
from text to enable application of arithmetic operations and to reduce storage. The 
two main types of numeric data are integer and floating point . Because computers work 
with Os and ls (a binary digit or bit ) , data are stored in ba.se-2 approximations to their 
base-10 counterparts. 

For integer data, the exact integer can be stored. The size of the integer stored 
depends on the number of bytes used, where a byte is eight bits. For example, if one 
byte is used, then in theory 28 = 256 different integers could be stored, such as -127 ,  
-126,  . . .  ) 127)  128. 

Noninteger data, or often even integer data, are stored as floating-point data. Stan­
dard floating-point data are stored in four bytes, where the first bit may represent the 
sign, the next 8 bits may represent the exponent, and the remaining 23 bits may rep­
resent the digits. Although all integers have an exact base-2 representation, not all 
base-10 numbers do. For example, the base-10 number 0 . 1  is 0.00011 in base 2. For this 
reason, the more bytes in the base-2 approximation, the more precisely it approximates 
the base-10 number. Double-precision floating-point data use eight bytes, have about 
16 digits precision (in base 10 ) , and are sufficiently accurate for statistical calculations. 
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Stata has the numeric storage types listed in table 2.1 :  three are integer and two 
are floating point. 

Table 2 . 1 .  Stata's numeric storage types 

Storage type Bytes 

byte 1 
int 2 

long 4 
float 4 

double 8 

Minimum 

-127 
-32, 767 

-2 , 147, 483, 647 
-1 .7014117:3319 X 1038 
-8. 99846567 43 X 10307 

Maximum 

100 
32,740 

2,14 7,483,620 
1.70141173319 X lQ:lS 
8.99846567 43 x W:;o7 

These internal data types have the advantage of taking fewer bytes to store the 
same amount of data. For example , the integer 123456789 takes up 9 bytes if stored 
as text but only 4 bytes if stored as an integer (long) or floating point (float). For 
large or long numbers, the savings can clearly be much greater. The Stata default is for 
floating-point data to be stored as float and for computations to be stored as double. 

Data read into Stata are stored using these various formats, and Stata data files 
( . dta) use these formats. One disadvantage is that numbers in internal-storage form 
cannot be read in the same way that text can; we need to first reconvert them to a text 
format . A second disadvantage is that it is not easy to transfer data in internal format 
across packages, such as transferring Excel's .xls to Stata's . dta, though commercial 
software is available that transfers data across leading packages. 

It is much easier to transfer data that is stored as text data. Down::;ides, however, 
are an increase in the s!ze of the dataset compared with the same dataset stored in 
internal numeric form, and possible loss of precision in converting floating-point data 
to text format. 

2.2.3 String data 

Nonnumeric data in Stata are recorded as strings, typically enclosed in double quotes, 
such as "3 Main Street" . The format command str20, for example, states that the data 
should be stored as a string of length 20 characters. 

In this book, we focus on numeric data and seldom use strings. Stata has many com­
mands for working with strings. Two useful commands me destring, which converts 
string data to integer data, and tostring, which does the reverse. 

2.2.4 Formats for displaying numeric data 

Stata output and text files written by Stata format data for readability. The format is 
automatically chosen by Stata but can be overridden. 
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The most commonly used format is the f format, or the fixed format. An example 
is %7 . 2f ,  which means the number will be right-justified and fill 7 columns with 2 digits 
after the decimal point. For example, 123.321 is represented as 123 .32 .  

The format type always begins with %. The default of  right-justification is replaced 
by left-justification if an optional - follows. Then follows an integer for the width 
(number of columns ) ,  a period ( . ) ,  an integer for the number of digits following the 
decimal point, and an e or f or g for the format used. An optional c at the end leads 
to comma format .. 

The usual format is the f format, or fixed format, e.g. ,  123 .32 .  The e, or exponential, 
format (scientifi.c notation) is used for very large or small numbers, e.g. ,  1 .  23321e+02. 
The g, or general format, leads to e or f being chosen by Stata in a way that will 
work well regardless of whether the data are very large or very small. In particular, the 
format % # .  ( # -1 )  g will vary the number of columns after the decimal point optimally. 
For example, %8 . 7g will present a space followed by the first six digits of the number 
and the appropriately placed decimal point. 

2 .3  Inputting data 

The starting point is the computer-readable file that comains the raw data. Where 
large datasets are involved, this is typically either a. text file or the output of another 
computer program, s1:ch as Excel, SAS, or even Stata. 

2.3 .1 General principles 

For a discussion of initial use of Stata, see chapter 1. We generally a::,sume that Stata 
is used in batch mode. 

To replace any e.\.isting dataset in memory, you need to fi.rst clear the current dataset. 

. • Remove current dataset from memory 

. clear 

This removes data and any associated value labels from memory. If you are reading in 
data from a Stata dataset, you can instead use the clear option with the use command. 
Various arguments of clear lead to additional removal of Mata functions, saved results, 
and programs. The clear all command removes all these. 

Some datasets are large. In that case, we need to assign more memory than the 
Stata default by using the set memory command. For example, if 100 megabytes are 
needed, then we type 

• Set memory to 100 mb 
. set memory tOOm 
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Various commands are used to read in data, depending on the format of the .file 
being read. These commands, discussed in detail in the rest of this section, include the 
following: 

e use to read a Stata dataset (with extension . dta) 
e edit and input to enter data from the keyboard or the Data Editor 

o insheet to read comma-separated or tab-separated text data created by a spread­
sheet · 

e infile to read unformatted or fixed-format text data 

., infix to read formatted data 

As soon as data are inputted into Stata, you should save the data as a Stata dataset. 
For example, 

• Save data as a Stata dataset 
save mydata.dta, replace 
(output omitted) 

The replace option will replace any existing dataset with the same name. If you do 
not want this to happen, then do not use the option. 

To check that data are read in correctly, list the first few observat ions, use describe, 
and obtain the summ<:1Iy statistics. 

• Quick check that data are read in correctly 
list in 115 // list the first five observations 
(output omitted) 

describe J I describe the variables 
(output omitted) 

summarize . II descriptive statistics for the variables 
(output omitted) 

Examples illustr�ting the output from describe and su=arize are given in sec­
tions 2.4.1 and 3.2. 

2.3.2 Inputting data already in Stata format 

Data in the Stata format are stored with the . dta extension, e.g., mydata. dta. Then 
the data can be read in with the use command. For example, 

• Read in existing Stata dataset 
use c : \research\mydata.dta, clear 

The clear option removes any data currently in memory, even if the current data have 
not been saved, enabling the new Tile to be read in to memory. 
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If Stata is initiated from the current directory, then we can more simply type 

• Read in dataset in current directory 
use mydat a . dta,  clear 

The use command also works over the Internet, provided that your computer is con­
nected. For example, you can obtain an extract from the 1980 U.S. Census by typing 

. * Read i n  dataset from an Internet web site 

. use http : //www. stata-press .c om/data/r10/census .dta, clear 
(1980 Census data by state) 

. clear 

2.3.3 Inputting data from the keyboard 

The input command enables data to be typed in from the keyboard. It assumes that 
data are numeric. If instead data are character, then input should additionally define 
the data as a string and give the string length. For example, 

• Data input froo keyboard 
input str20 name age female income 

name 
1 .  "Barry" 25 0 40 .990  
2 .  "Carrie" 30 1 37 .000 
3 .  "Gary" 31 0 48. 000 
4 .  end 

age female inc01r..e 

The quotes here are not necessary; we could use Barry rather than "iarry " .  If the 
name includes a space, such as "Barry Jr" , then double quotes are needed; otherwise, 
Barry would be read as a string, and then Jr would be read as a number, leading to a 
progTam error. 

To check that the data are read in correctly, we use the list command. Here we 
add the clean option, which lists the data without divider and sepa.rator lines. 

list, clean 
name age female income 

1 .  Barry 25 0 40 .99  
2 .  Carrie 30 37 
3 .  Gary 31 0 48 

In interactive mode, you can instead use the Data Editor to type in data (and to 
edit existing data) . 

2.3.4 I nputting nontext data 

By nontext data, we mean data that are stored in the internal code of a software package 
other than Stata. It is easy to establish whether a file is a nontext file by viewing the 
file using a text editor. If strange characters appear, then the fi le is a nontext fi le. An 
example is an Excel .x:.s file. 
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Stata supports several special formats. The fdause command reads SAS XPORT 
Transport format fi les; the haver command reads Haver Analytics database fi les; the 
odbc command reads Open Database Connectivity ( ODBC) data files; and the xmluse 
conm1and reads XML files. 

Other formats such as an Excel . xls fi le cannot be reC�.d by Stata. One solution is to 
use the software that created the data to write the data out into one of the readable text 
format files discussed below, such as a comma-separated values text fi.le. For example, 
just save an Excel worksheet as a . csv file. A second solution is to purchase software 
such as Stat/Transfer that will change data from one format to another. For conversion 
progTa.ms, see http:/ /www .ats.ucla.edu/stat/StatajfaqjconverLpkg.htm. 

2.3.5 Inputting text data from a spreadsheet 

The insheet command reads data that are saved by a spreadsheet or database program 
a'3 comma-separated or tab-separated text data. For example, mus02file1 . csv, a file 
with comma-separated values, has the following data: 

name ,age,female, income 
Barry , 25 , 0 ,40 . 990 
Carrie , 30 , 1 ,  37. 000 
Gary , 3 1 , 0  ,48 .  000 

To read these data, we use insheet. Thus 

• Read data from a csv file that includes variable names using insheet 
clear 
insheet using mus02f i le1. csv 

(4 vars, 3 cbs) 

list,  clean 
name age female 

1 .  Barry 25 0 
2.  Carrie 30 
3 .  Gary_ . 31 0 

income 
40.99 

37 
48 

Stata automatically recognized the name variable to be a string variable, the age and 
female variables to be integer, and the income variable to be floating point. 

A major advantage of insheet is that it can read in a text file that includes variable 
names as well as data, making mistakes less likely. There are some limitations, however. 
The insheet command is restricted to fi les with a single observation per line. And the 
data must be comma-separated or tab-separated, but not both. It cannot be space­
separated, but other delimiters can be specified.by using the delimiter option. 

The fi rst line with variable names is optional. Let mus02file2 .  csv be the same as 
the original fi le, except without the header line: · 

Barry , 2 5 ,  0 ,4  0 .  990 
Carrie , 30 , 1 , 37 . 000 
Gary , 3 1 , 0 , 48 . 000 
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The insheet command still works. By default ,  the variables read in are given the names 
vl, v2, v3, and v4. Alternatively, you can assign more meaningful names in insheet. 
For example, 

• Read data from a csv file without variable names and assign names 
clear 
insheet name age female income using mus02file2.csv 

(4 vars , 3 cbs) 

2.3.6 I nputting text data 1n free format 

The infile command reads free-format te.:d. data that are space-separated, tab­
separated, or comma-separated. 

We again consider mus02f ile2 .  csv, which has no header line. Then 

• Read data from free-format text file using infilc 
clear 
infilo str20 name age female income using mus02file2 . csv 

(3 observations read) 

list,  clean 

name age female income 
1 .  Barry 25 0 40 .99  
2 .  Carrie 30 37 
3. Gary 31 0 48 

By default, infile reads in all data as numbers that are stored as floating point. This 
causes obvious problems if the original data are string. By inserting str20 before name, 
the first variable is instead a string that is stored as a string of at most 20 characters. 

For infile ,  a single observation is allowed to span more than one line, or there can 
be more than one observation per line. Essentially every fourth entry after Barry will 
be read as a string entry for name, every fourth entry after 25 will be read as a numeric 
entry for age, and so on. 

The infile command is the most flexible command to read in data and will also 
read in fixed-format data. 

2 .3 .  7 I nputting text data 1n  fixed format 

The infix command reads fixed-format text data that are in fixed-column format. For 
example, suppose mus02file3 .  txt contains the same data as before, except without 
the header line and with the following fixed format: 

Barry 
Carrie 
Gary 

250 40.990 
301 37.000 
310 48.000 

Here columns 1-10 store the name variable, coltunns 11-12 store the age variable, 
colmnn 13 stores the female variable, and columns 14-20 store the income variable. 
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Note that a special feature of fixed-format data is that there need be no S?parator 
between data entries. For example, for the first observation, the sequence 250 is not 
age of 250 but is instead two variables: age = 25 and female = 0. It is easy to make 
errors when reading fixed-format data. 

To use infix, we need to define the columns in which each entry appears. There 
are a number of ways to do this. For example, 

• Read data from fixed-format text file using infix 
clear 
infix str20 name 1-10 age 11-12 female 13 income 14-20 using mus02file3 .txt 

(3 observations read) 

list, clean 
name age female income 

1 .  Barry 25 0 40 .99  
2 . Carrie 30  37 
3 .  Gary 31 0 48 

Similarly to infile, we include str20 to indicate that name is a string rather than a 
number. 

A single observation can appear on more than one line. Then we use the symbol 
I to skip a line or use the entry 2 : ,  for example, to switch to line 2. For example, 
suppose mus02file4 .  txt is the same as mus02f ile3 .  txt, except that income appears 
on a separate second line for each observation in columns 1-7. Then 

• Read data using infix where an observation spans more than one line 
clear 
infix str20 name 1-10 age 11-12 female 13 2: income 1-7 using mus02f ile4.txt 

(3 observations read) 

2.3.8 Dictionary files 

For more complicated text data.sets, the format for the data being read in carl. be stored 
in a dictionary file, .a te;'<t file created by a word processor, or editor. Details are provided 
in [D] infile (fixed format) .  Suppose this file is called mus02dict . dct. Then we simply 
type 

. • Read in data with dictionary file 

. infile using mus02dict 

where the dictionary fi.le mus02dic t. dct provides variable names and formats as well 
as the name of the file containing the data. 

2.3.9 Common pitfalls 

It  can be surprisingly difficult to  read in data. With fixed-format data, wrong column 
alignment leads to errors. Data can unexpectedly include string data, perhaps with 
embedded blanks. Missing values might be coded as NA, causing problems if a nu-
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meric value is expected. An observation can span several lines when a single line was 
erroneously assumed. 

It is possible to read a dataset into Stata without Stata issuing an error message; 
no error message does not mean that the dataset has been successfully read in. For 
example, transferring data from one computer type to another, such as a file transfer 
using File Transfer Protocol (FTP), can lead to an additional carriage return, or Enter , 
being typed at the end of each line . Then infix reads the dataset as containing one 
line of data, followed by a blank line, then another line of data, and so on. The blank 
lines generate extraneous observations with missing values. 

You should always perform checks, such as using list and summarize. Always view 
the data before beginning analysis. 

2.4 Data management 

Once the data are read in ,  there can be considerable work in cleaning up the data, trans­
forming variables, and selecting the final sample. All data-management tasks should 
be recorded, dated, and saved. The existence of such a record makes it easier to track 
changes in definitions and eases the task of replication. By far, the easiest way to do 
this is to have the data-management manipulations stored in a do-file rather than to 
use commands interactively. We assume that a do-file is  used. 

2.4.1 PSiD example 

Data management is best illustrated using a real-data example. Typically, one needs 
to download the entire original dataset and an accompanying document describing the 
dataset. For some major commonly used datasets, however, there may be cleaned-up 
versions of the dataset, simple data extraction tools, or both. 

Here we obtain a very small extract from the 1992 Individual-Level data from the 
Panel Study of Income Dynamics (PSID ), a U.S. longitudinal survey conducted by the 
University of Michigan. The extract was downloaded from the Data Center at the 
web site http:/ /psidonline.isr.umich.edu/, using interactive tools to select just a few 
variables. The extracted sample was restricted to men aged 30-50 years. The output 
conveniently included a Stata do-file in addition to the text data file. Additionally, a 
codebook describing the variables selected was provided. The data download included 
several additional variables that enable unique identifi ers and provide sample weights. 
These should also be included in the final dataset but, for brevity, have been omitted 
below. 

Reading the text dataset mus02psid92m. txt using a text editor reveals that the first 
two observations are 

4- 3- 1- 2- 1- 2482- 1- to· 4o- s· 22ooo· 2340 
4- 17o- 1 - 2· 1 - 5974· t· to· 3r 12· 31468- 2008 

The data are text data delimited by the symbol • .  
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Several methods could be used to read the data, but the simplest is to use insheet. 
This is especially simple here given the provided do-file. The mus02psid92m . d o  file 
contains the following information: 

• Commands to read in data from PSID extract 
type mus02psid92m .do 

• mus02psid92m .do 
clear 
#delimit ; 

PSID DATA CENTER * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
JOBID 10654 

PSIO DAT A_DOMAIN 
USER_WHERE 
FILE_ TYPE 
OUTPUT_DATA_TYPE 
STATEMENTS 

ER32000�1 and ER30736 ge 30 and ER 
All Individuals Data 
ASCII Data File 
STATA Statements 

CODEBOOK_TYPE PDF 
N_OF_VARIABLES 12 
N_OF_OBSERVATIONS: 4290 
MAX_REC_LENGTH 56 
DATE & TIME November 3, 2003 @ 0 : 2 8 : 35 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

in sheet 
ER30001 ER30002 ER32000 ER32022 ER32049 ER30733 ER30734 ER30735 ER30736 
ER30748 ER30750 ER30754 

using mus02psid92m. txt, delim( " - " )  clear 

destring , replace ; 
label variable er30001 
label variable er30002 
label variable er32000 
label variable er32022 
label variable er32049 
label variable cr307.33 
label variable er30734 
label variable er30735 
label variable er30736 
label variable er30748 

" 1968 INTERVIEW NUMBER" 
"PERSON NUNBER 
"SEX OF INDIVIDUAL" ; 

68" 

"# LIVE BIRTHS TO THIS INDIVIDUAL" 
"LAST KNOWN MARITAL STATUS" 
" 1992 INTERVIEW NUMBER" 
"SEQUENCE NUNBER 92" 
"RELATION TO HEAD 92" 
"AGE OF INDIVIDUAL 92" 
"COMPLETED EDUCATION 92" 

label variable er30750 "TOT LABOR INCOME 92" 
label variable ·er30754 "ANN WORK HRS 92" 
#delimit c r; II Change delimiter to default cr 

To read the data, only insheet is essential. The code separates commands using 
the delimiter ; rather than the default cr (the Enter key or carriage return) to enable 
comments and commands that span several lines. The destring command, unnecessary 
here, converts any string data into numeric data. For example, $1,234 would become 
1234. The label variable command provides a longer description of the data that will 
be reproduced by using describe. 

Executing this code yields output that includes the following: 

(12 vars,  4290 cbs) 
. destring , replace 
er30001 already numeric ;  no replace 

(output omitted). 
er30754 already numeric ;  no replace 
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The statement already numeric is output for all variables because all the data in 
mus02psid92m. txt are numeric. 

The describe command provides a description of the data: 

. • Data description 

. describe 
Contains data 

cbs: 4 ,290 
12 var s:  

size:  9 8 , 670 (99.1/. of memory free) 

storage display value 
variable name typo format label variable label 

er30001 int /.8.0g 1968 INTERVIE'..I truMBER 
er30002 int /. 8 .0g PERSON NUMB ER 6 8 
er32000 byte /.8.0g SEX OF  INDIVIDUAL 
er32022 byte /.8.0g # LIVE BIRTHS TO THIS INDIVIDUAL 
er32049 byte /.8.0g LAST KNOWN MARITAL STATUS 
er30733 int /.8.0g 1992 INTERVIEW NUMBER 
er30734 byte /.8.0g SEQUENCE NUMBER 9 2 
er30735 byte /.8.0g RELATION TO HEAD 92 
er30736 byte /.8.0g AGE OF  INDIVIDUAL 92 
er30748 byte /.8.0g COMPLETED EDUCATION 92 
er30750 long 'l.12.0g TOT LABOR INCOME 92 
er30754 int /.8.0g .ANN WORK HRS 92 

Sorted by: 
Note: dataset has changed since last saved 

Th·e summarize command provides descriptive statistics: 

• Data summary 
summarize 

Variable Obs Mean Std. Dev.  

er30001 4290 4559 . 2  2850 . 509 
er30002 4290 60 . 66247 7 9 . 93979 
er32000 4290 1 0 
er32022 4290 2 1 . 35385 38.20765 
er32049 4290 1 . 699534 1. 391921 

er30733 4290 4911 . 015 2804 . 8  
er30734 4290 3 . 179487 1 1 . 4933 
er30735 4290 1 3 . 33147 12 . 44482 
er30736 4290 38. 37995 5. 650311 
er30748 4290 1 4 . 87249 1 5 . 07546 

er30750 4290 27832 .68 31927 .35  
er30754 4290 1929. 477 899. 5496 

Min Max 

4 9308 
227 

9 9  
9 

9829 
81 

10 98 
30 50 

0 99 

0 999999 
0 5840 

Satisfied that the original data have been read in carefully, we proceed with cleaning 
the data. 
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The first step is to give more meaningful names to variables by using the rename com­
mand. 'vVe do so just for the variables used in subsequent analysis. 

* Rename variables 
rename er32000 sex 
rename er30736 age 
rename er30748 education 
rename er30750 earnings 

rename er30754 hours 

The renamed variables retain the descriptions that they were originally given. Some 
of these descriptions are unnecessarily long, so we use label variable to shorten output 
from commands, such as describe, that give the variable labels: 

• Relabel some of the variables 
label variable age "AGE OF INDIVIDUAL" 

label variable education "COMPLETED· EDUCATION" 
label variable earnings "TOT LABOR INCOME" 

label variab:e hours "ANN WORK lffiS" 

For categorical variables, it can be useful to explain the meanings of the variables. 
For example, from the code book discussed in section 2.4.4, the er32000 variable takes 
on the value 1 if male and 2 if female. We may prefer that the output of variable values 
uses a label in place of the number. These labels are provided by using label define 
together with label values. 

* Define the label gender for the values taken by variable sex 
label def�e gender 1 male 2 female 

label values sex gender 
list sex in 1/2,  clean 

sex 
1 .  male 
2 .  male 

After renaming, we obtain 

* Data summary of key variables after renaming 
summarize sex age education earnings hours 

Variable Obs Mean Std. Dev. 

sex 4290 0 
age 4290 38.37995 5 . 650311 

education 4290 1 4 . 87249 1 5 . 07546 
earnings 4290 27832 .68  31927.35 

hours 4290 1929 . 477 899,5496 

Min 

30 
0 
0 
0 

Max 

1 
50 
99 

999999 
5840 

Data exist for these variables for all 4,290 sample observations. The data have 30 � 
age � 50 and sex = .1 (male) for all observations, as expected. The maximum value 
for earnings is $999;999, an unusual value that most likely indicates top-coding. The 
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maximum value of hours is quite high and may also indicate top-coding (365 x 16 = 
5840). The maximum value of 99 for education is clearly erroneous; the most likely 
explanation is that this is a missing-value code, because numbers such as 99 or �99 are 
often used to denote a missing value. 

2.4.3 Viewing data 

The standard commands for viewing data are summarize, list, and tabulate .  

We have already illustrated the summarize command. Additional statistics, includ­
ing key percentiles and the five largest and smallest observations, can be obtained by 
using the d etail option; see section 3.2.4. 

The list command can list every observation, too many in practice. But you could 
list just a few observations: 

• List first 2 observations of tYo of the variables 
list age hours in 1/2 ,  clean 

age hours 
1 .  40 2340 
2 .  37 2008 

The list conm1and with no variable list provided will list all the variables. The clean 
option eliminates dividers and separators. 

The tabulate command lists each distinct value of the data and the number of 
times it occurs. It is useful for data that do not have too many distinctive values. For 
education, we have 

• Tabulate all values taken by a single variable 
tabulate education 

COMPLETED 
EDUCATION Freq. Percent Cum . 

0 82 1 .  9 1  1 . 9 1  
1 7 0 . 16 2 .07  
2 20 0 . 47 2.54 
3 32 0 . 75 3 .29  
4 26 0 . 6 1  3 .89  
5 30 0. 70  4 .59  
6 123 2 .87  7 .46  
7 35 0 .82  8 .28  
8 78 1. 82 10 .09 
9 117 2 .73 12 .82 

10 167 3 . 8 9  1 6 . 7 1  
1 1  217 5. 06 2 1 . 77 
12 1 , 510 35 .20 56 .97  
13 263 6 . 13 63 . 10  
14 432 10 .07  73 .17  
15  172 4 . 0 1  77 .18  
1 6  535 12 . 47 89 .65  
17 317 7 . 39 97 . 04 
99 127 2 . 9 6  l.oo.oo 

Total 4 ,  290 100.00 
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Note that the variable label rather than the variable name is used as a header. The 
values are generally plausible, with 35% of the sample having a highest grade completed 
of exactly 12 years (high school graduate). The 7% of observations with 17 years most 
likely indicates a postgraduate degree (a college degree is only 16 years) . The value 99 
for 3% of the sample most likely is a missing-data code. Surprisingly, 2% appear to 
have completed no years of schooling. As we explain next, these are also observations 
with missing data. 

2.4.4 Using 'original documentation 

At this stage, it is really necessary to go to the original documentation. 

The mus02psid92mcb . pdf fi le, generated as part of the data extraction from the 
PSID web site, states that for the er30748 variable a value of 0 means "inappropriate" 
for various reasons given in the code book; the values 1 - 16 are the highest grade or year 
of school completed; 17 is at least some graduate work; and 99 denotes not applicable 
(NA) or did not know (DK). 

Clearly, the education values of both 0 and 99  denote missing values. Without 
using the codebook, we may have misinterpreted the value of 0 as meaning zero years 
of schooling. 

2.4.5 Missing values 

It is best at  this stage to flag missing values and to keep all observations rather than 
to immediately drop observations with missing data. In later analysis, only those ob­
servations with data missing on variables essential to the analysis need to be dropped. 
The characteristics of individuals with missing data can be compared with those having 
complete data. Data with a missing value are recoded with a missing-value code. 

For education, the missing-data values 0 or 99 are replae:ed by . (a period), which 
is the default Stata missing-value code. Rather than create a new variable, we modify 
the current variable by using replace, as follows: 

. • Replace missing values Yith missing-data code 
. replace education = . if education == 0 I education == 99 
(209 real changes mad e ,  209 to missing) 

Using the double equality and the symbol I for the logical operator or is detailed in 
section 1 .3 .5 .  As an example of the results, we list observations 46-48: 

• Listing of variable including missing value 
. list education in 46/48, clean 

educat-n 
46. 12 
47 .  
48 .  16 

Evidently, the original data on  education for ·the 47th observation equaled 0 or 99. 
This has been changed to missing. 
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Subsequent commands using the education variable will drop observations with 
missing values. For example, 

• Example of data analysis Yith some missing values 
summarize education age 

Variable Dbs Mean Std. Dev. Min Max 

education 4081 12 . 5533 2 . 963696 1 17 
age 4290 38. 37995 5. 650311 30 50 

For education, only the 4,081 nonmissing values are used, whereas for age, all 4,290 of 
the original observations are available. 

If desired, you can use more than one missing-value code. This can be useful if you 
want to keep track of reasons why a variable is missing. The extended missing codes 
are . a, . b, . . .  , . z. For example, we could instead have typed 

• Assign more than one missing code 
replace education = . a  if education == 0 
replace education = . b  if education == 99 

When we want to apply multiple missing codes to a variable, it is more convenient 
to use the mvdecode command, which is similar to the recode command (discussed 
in section 2.4.7), which changes variable values or ranges of values into missing-value 
codes. The reverse command, mvencode, changes missing values to numeric values. 

Care is needed once missing values are used. In particular, missing values are treated 
as large numbers, higher than any other number. The ordering is that all numbers are 
less than . , which is less than . a, and so on. The command 

• This command Yill include missing values 
list education in 40/60 if education > 1 6 ,  clean 

educat-n 
4 5. 17 
47.  
60 . 17 

lists the missing value for observation 4 7 in addition to the two values of 17. If this is 
not desired, we should instead use 

• This command Yill not include missing values 
list education in 40/60 if education > 16 & education < . , clean 

educat-n 
45 .  17 
60.  17 

Now observation 47 with the missing observation has been excluded. 

The issue of missing values also arises for earnings and hours. From the code book, 
we see that a zero value may mean missing for various reasons, or it may be a tn1e zero 
if the person did not work. True zeros are indicated by er30749=0 or 2, but we did 
not extract this variable. For such reasons, it is not unusual to have to extract data 
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several times. Rather than extract this additional variable, as a shortcut we note that 
earnings and hours a:re missing for the same reasons that education is missing. Thus 

. • Replace missing values 1o1ith missing-data code 

. replace earnings � . if education >� . 
(209 real changes made, 209 to missing) 
. replace hours � . if education >� . 
(209 real changes made , 209 to missing) 

2.4.6 imputing missing data 

The standard approach in microeconometrics is to drop observations with missing val­
ues, called listwise deletion. The loss of observations generally leads to le::;s precise 
estimation and inference. More importantly, it may lead to sample-selection bias in 
regression if the retained observations have unrepresentative values of the dependent 
variable conditional on regressors. 

An alternative to dropping observations is to impute missing values. The impute 
command uses predictions from regression to impute. The ipolate command uses 
interpolation methods. We do not cover these commands because the::;e imputation 
method::; have limitations, and the norm in microeconometric::; ::;tudie::; i::; to u::;e only the 
original data. 

A more promising approach, though one more advanced, is multiple imputation. 
This produces J\.1 different imputed datasets (e.g., J\.1 = 20), fits the model lli times, 
and performs inference that allows for the uncertainty in both estimation and data 
imputation. For implementation, see the user-written ice  and hotdeck commands. You 
can find more information in Cameron and Trivedi (2005) and from findit multiple 
imputation. 

2.4. 7 Transforming data (generate, replace, egen, recode) 

After handling missing values, we have the following for the key variable::;: 

• Summarize cleaned up data 
suttlmarize sex age education earnings 

Variable Dbs Mean Std. Dev. Min Max 

sex 4290 0 
age 4290 38 . 37995 5 .  650311 30 50 

education 4081 1 2 . 5533 2 . 963696 17 
earnings 4081 28706 .65 32279 . 1 2  0 999999 

We now turn to recoding existing variables and creating new variables. The basic 
commands are generate and replace. It can be more convenient, however, to use the 
additional commands recode, egen, and tabulate. These are often used in conjunction 
with the if qualifier and the by :  prefix. We present many examples throughout the 
book. 
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The generate and replace commands 

The generate command is used to create new variables , often using standard mathe­
matical functions. The synta..' of the command is 

generate [ type ] newvar = exp [ if ] [ in ] 

where for numeric data the default type is float, but this can be changed, for example, 
to double. 

It is good practice to assign a unique identifier to each observation if one does not 
already exist. A natural choice is to use the current observa".;ion number stored as the 
system variable _n. 

• Create identifier using generate command 
generate id � _n 

We use this identifier for simplicity, though for these data the er30001 and er30002 
variables when combined provide a unique PSID identifier. 

The following command creates a new variable for the nat'.tral logarithm of earnings: 

. • Create neY variable using generate command 

. generate lnearns � ln(earnings) 
(498 missing values generated) 

Missing values for ln (earnings) are generated whenever earnings data are missing. 
Additionally, missing values arise when earnings ::; 0 because it is then not possible to 
take on the logarithm. 

The replace command is used to replace some or all values of an existing variable. 
We already illustrated tbis when we created rnissirig-values codes. 

The egen command 

The egen command is an extension to generate that enables creation of variables that 
would be difficult to create using generate. For example, suppose we want to create a 
variable that for e<1.ch ooservation eqtt.:'lls sample average earnings provided that sample 
earnings are nonmissing. The command 

. • Create neY variable using egen command 

. egon aveearnings = mean(earnings) if earnings < . 
(209 missing values generated) 

creates a variable equal to the average of earning'S for those observations not missing 
data on earnings. 
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The recode command 
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The r ecode command is an extension to replace. that recodes categorical variables and 
generates a new variable if the generate 0 option is used. The conunand 

. • Replace existing data using the recede command 

. recede education (1/11=1)  (12=2) (13/15=3) (16/17=4) , generate (edcat) ', 

(4074 differences betYeen education and edcat) 

creates a new. variable, edcat, that takes on a value of 1, 2, 3, or 4 corresponding to, 
respectively, less than high school gTaduate, high school graduate, some college, and 
college graduate or higher. The edcat variable is set to missing if education does not 
lie in any of the ranges given in the recode command. 

The by prefix 

The by varlist : prefix repeats a command for each group of observations for which the 
variables in varlist are the same. The data must first be sorted by varlist. This can 
be done by using the sort command, which orders the observations in ascending order 
according to the variable(s) given in the command. 

The sort command and the by prefix are more compactly combined into the bysort 
prefix. For example, suppose we want to create for each individual a variable that equals 
the sample average earnings for all persons with that individual's years of education. 
Then we type 

. • Create nell variable using bysort : prefix 

. bysort education: egen aveearnsbyed = mean(earnings) 
(209 missing values generated) 
. sort id 

The final command, one that retun1s the ordering of the observation to the original 
ordering, is not' required. But it could make a difference in subsequent analysis if, for 
example, we were t() work with c,. subsample of the first 1,000 observations. 

Indicator variables 

Consider creating a variable indicating whether earnings are positive. While there are 
several ways to proceed, we only describe our recommended method. 

The most direct way is to use generate with logical operators: 

. • Create indicator variable using generate· command Yith logical operators 

. generate dl = earnings > 0 if earnings < . 
(209 missing values generated) 

The expression dl = earnings > 0 creates an indicator variable equal to 1 if the con­
dition holds and 0 otherwise. Because missing values are treated as large numbers, we 
add the condition if earnings < . so that in those cases d1 is set equal to missing. 
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Using summarize, 

summarize d1 

Variable I 
d1 1 

Dbs Mean 

4081 . 929184 

Clwpter 2 Data management and graphics 

Std. Dev. Min Max 

. 2565486 c 

we can see that about 93% of the individuals in this sample had some earnings in 1992. 
We can also see that we have 0.929184 x 4081 = 3792 observations with a value of 1 ,  
289 observations with a value o f  0, and 209 missing observations. 

Set of ind icator variables 

A complete set of mutually exclusive categorical indicator dummy variables can be 
created in several ways. 

For example, suppose we want to create mutually exclusive indicator variables for 
less than high school graduate, high school gTacluate, some college, and college graduate 
or more. The starting point is the edcat variable, created earlier, which takes on the 
values 1-4_ 

We can use tabulate with the generate 0 option. 

• Create a set of indicator variables using tabulate Yith generat e ( )  option 
quietly tabulate edcat , generate (eddummy) 
summarize eddummy* 

Variable Dbs Mean Std. Dev. Min Max 

eddummy1 4081 . 2087724 .4064812 0 
eddummy2 4081 .3700074 .4828655 0 
eddummy3 4081 . 2 124479 .4090902 0 
eddummy4 4081 . 2087724 .4064812 0 

The four means sum to one, as expected for four mutually exclusive categorie::;. Note 
that if edcat had taken on values 4, 5, 7, and 9, rather than 1-4, it would still generate 
variables numbered eddummy1-eddummy4. 

An alternative method is to use the xi command. For example, 

* Create a set of indicator variables using command xi 
xi i . edcat, noomit 
summarize _I* 

Variable Dbs Mean Std. Dev. 

_Iedcat_1 4081 . 2087724 .4064812 
_Iedcat_2 4081 .3700074 .4828655 
_Iedcat_3 4081 .2124479 .4090902 
_Iedcat_4 4081 . 2087724 .4064812 

Min 

0 
0 
0 
0 

Max 

The created categorical variables are given the name edca t with the prefix _I .  The suffix 
numbering corresponds exactly to the distinct values taken by edcat, here 1-4. The 
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noomi t option is added because the default is to omit the lowest value category, so here 
_Iedcat_1 would have been dropped. The prefix option allows a prefix other than _I 
to be specified. This is necessary if xi will be used again. 

More often, xi is used as a prefix to a command, in .which case the variable list 
includes i .  varna me, where varname is a categorical varial:>le that is to appear as a set 
of categorical indicators. For example, 

• Comm�d Yith a variable list that includes indicators created using x i :  
x i :  summarize i . edcat 

i .  edcat Iedcat_1-4 (naturally coded; _Iedcat_1 omitted) 

Variable Dbs Mean Std. Dev. Min Max 

_Iedcat_2 
_Ied<;at_3 

Iedcat_4 

4081 
4081 
4081 

.3700074 

. 2124479 

.2087724 

.4828655 

.4090902 

.4064812 

0 
0 
0 

This is especially convenient in regression commands. We can simply include i .  edca t 
in the regressor list, so there is no need to first create the set of indicator variables; see 
chapter 8.5.4 for an example. 

interactions 

Interactive variables can be created in the obvious manner. For example, to create 
an interaction between the binary earning'S indicator d1 and the continuous variable 
education, type 

. • Create interactive variable using generate commands 

. generate d1education � d1•education 
(209 missing values generated) 

It can be much simpler to use the xi command, especially if the categorical variable 
takes on more than two values. For example, we can generate a complete set of in­
teractions between the categorical variable edcat (with four categories) and earnings 
(continuous) by typing 

• Create set of interactions betyeen cat variable and set of indicators 
drop _Iedcat_• 

xi i . edcat•earnings , noomit 
i . edcat•earni-s _IedcXearni_# 

summarize I •  
Variable Dbs Mean 

_Iedcat_1 4081 .2087724 
_Iedcat_2 4081 .3700074 

Iedcat_3 4081 . 2124479 
_Iedcat_4 4081 .2087724 

IedcXearn-1 4081 3146.368 

IedcXearn-2 4081 8757 . 823 
IedcXearn-3 4081 6419 . 347 
IedcXearn-4 4081 10383 . 1 1  

(coded as above) 

Std. Dev. 

.4064812 

. 4828'655 

. 4090902 

. 4064812 
8286. 325 

15710 .76  
16453 . 14 
32316.32 

Min 

0 
0 
0 
0 
0 

0 
0 
0 

Max 

1 
80000 

215000 
270000 
999999 
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Another example is to interact a categorical variable with another set of indicators. 
For example, to interact variable dl with edcat, type 

* Create a set of interactions betYeen a categorical and a set of indicators 
drop _ I* 

xi i .  edcat • i .  d 1 ,  noomi t 
i .  edcat•i .d1  IedcXd1 _#_# (coded as above) 

summarize .... I* 
Variable Dbs Mean Std. Dev. Hin Max 

Iedcat_1 4081 .2087724 .4064812 0 
_Iedcat_2 4081 . 3700074 .4828655 0 

Iedcat_3 4081 .2124479 .4090902 0 
Iedcat_4 4081 .2087724 .4064812 0 

Id1_0 4081 . 070816 .2565486 0 

Id1_1 4081 .929184 .2565486 0 
IedcXd1 1 0 4081 . 0316099 . 1749806 0 
IedcXd1 1 1 4081 . 1771625 .3818529 0 

_ledcXd1_2_0 4081 .0279343 . 1648049 0 
IedcXd1 2 1 4081 .342073 .474462 0 

IedcXd1 3 0 4081 .0098015 . 0985283 0 
IedcXd1 3 1 4081 .2026464 .4020205 0 

_IedcXd1 4 0 4081 . 0014702 . 03832 0 
_IedcXd1_4_1 4081 . 2073021 . 4054235 0 

Again this is especially convenient in regression commands because it can obviate 
the need to first create the set of interactions. 

Demeaning 

Suppose we want to include a quadratic in age as a regressor. The marginal effect of age 
is much easier to interpret if we use the demeaned variables (age-age) and (age-age)2 
as regressors. 

• Create demeaned variables 
egen double a veage = mean(age) 
generate double agedemean = age - aveage 
generate double agesqdemean r agedemean-2 

summarize agedemean agesqdemean 
Variable Obs Mean 

agedemean I agesqdemean 
4290 
4290 

2 . 32e-15 
3 1 . 91857 

Std. Dev. Min Max 

5 . 650311 - 8 . 379953 1 1 . 62005 
32. 53392 . 1 443646 135.0255 

We expect the agedemean variable to have an average of zero. We specified double 
t o  obtain additional precision i n  the floating-point calculations. I n  the case at hand, 
the mean of agedemean is on the order of 1 0-15 instead of 10-6 ,  which is what single­
precision calculations would yield. 
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2.4.8 Saving data 

At this stage, the dataset may be ready for saving. The save command creates a Stata 
data fi le. For example, 

. * Save as Sta�a data file 

. save mus02psid92m .dta, replace 
file mus02psid92m.dta saved 

The replace option means that an existing dataset with the same name, if it exists, will 
be overwritten. The . dta extension is unnecessary because it is the default extension. 

The related command saveold saves a data file that can be read by versions 8 and 
9 of Stata. 

The data can also be saved in another format that can be read by programs other 
than Stata. The outsheet command allows saving as a text file in a spreadsheet format. 
For example, 

* Save as comma-separated values spreadsheet 
outsheet age education eddummy• earnings d1 hours using mus02psid92m . csv,  

> comma replace 

Note the use of the wildcard * in eddummy. The outsheet command expands this 
to eddummy1 -eddu=y4 per the rules for wildcards, given in section 1.3.4. The comma 
option leads to a . csv fi le with comma-separated variable names in the first line. The 
first two lines in mus02psid92m. csv are then 

age, education,eddummy1 , eddummy 2,  eddummy 3 ,eddummy4 ,earnings ,d 1, hours 
40 , 9 , 1 , 0 , 0 , 0 , 22000 , 1 , 2340 

A space-delimited formatted text fi.le can also be created by using the outfile 
command: 

. • Save as formatted text (ascii) file 

. outfile age education edaummy• earnings d1 hours using mus02psid92m .asc ,  
> replace -

The first line in mus02psid92m . asc is then 

40 9 
2340 

0 0 0 22000 

This fi le will take up a lot of space; less space is taken if the comma option is used. The 
format of the file can be specified using Stata's dictionary format. 

2.4.9 Selecting the sample 

Most commands will automatically drop missing values in implementing a given com­
mand. We may want to drop additional observations, for example, to restrict analysis 
to a particular age group. 
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This can be done by adding an appropriate if qualifier after the command. For 
example, if we want to summarize data for only those individuals 35-44 years old, then 

• Select the sample used in a single command using the if qualifier 
summarize earnings lnearns if age >= 35 & age <= 44 

Variable Obs Mean Std. Dev. Min Max 

earnings 
lnearns 

2114 
1983 

30131 .05 
1 0 . 04658 

37660. 1 1  0 999999 
. 9001594 4 . 787492 13. 81551 

Different samples are being used here for the two variables, because for the 131 obser­
vations with zero earnings, we have data on earnings but not on lnearns. The if 
qualifier uses logical operators, defi11ed in section 1.3.5. 

However, for most purposes, we would want to use a consistent sample. For example, 
if separate earnings regressions were run in levels and in logs, we would usually want to 
use the same sample in the two regTessions. 

The drop and keep commands allow sample selection for the rest of the analysis. 
The keep command explicitly selects the subsample to be retained. Alternatively, we 
can use the drop command, in which case the subsample retained is the portion not 
dropped. The sample dropped or kept can be determined by using an if  qualifier, a 
variable list, or by defi.ning a range of observations. 

For the current e."<ample, we use 

. • Select the sample using command keep 

. keep if (lnearns ! =  . )  & (age >= 35 & age <= 44) 
(2307 observations deleted) 

summarize earnings lnearns 
Variable Obs 

earnings 
lnearns 

1983 
1983 

Mean 

32121 . 5 5  
1 0 . 04658 

Std. Dev. Min Max 

38053 .31  120 999999 
.9001594 4 . 787492 1 3 . 81 551 

This command keeps the data provided: lnearns is nonmissing and 35 ::; age ::; 44. 
Note that now earnings and lnearns are summarized for the same 1,983 observations. 

As a second example, the commands 

• Select the sample using keep and drop commands 
use mus02psid92m .dta,  clear 
keep lnearns age 
drop in 1/1000 

(1000 observations deleted) 

will lead to a sample that contains data on all but the first one thousand observations 
for just the two variables lnearns and age. The use mus02psid92m . dt a command is 
added because the previous example had already dropped some of the data. 
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Useful manipulations of datasets include reordering observations or variables, temporar­
ily changing the dataset but then returning to the original dataset, breaking one obser­
vation into several observations (and vice versa) , and combining more than one dataset. 

2.5.1 Ordering observations and variables 

Some commands, such as those using the by pre5x, require sorted observations. The 
sort command orders observations in ascending order according to the variable(s) in 
the command. The gsort command allows ordering to be in descending order. 

You can also reo�der the variables by using the order command. This can be useful 
if, for example, you want to distribute a dataset to others with the most important 
variables appearing as the 5rst variables in the dataset. 

2.5.2 Preserving and restoring a dataset 

In some cases, it is desirable to temporarily change the dataset , perform some calcu­
lation, and then return the dataset to its original form. An example involving the 
computation of marginal effects is presented in section 10.5 .4 .  The preserve command 
preserves the data, and the restore command restores the data to the form it had 
immediately before preserve. 

• Commands preserve and restore illustrated 
use mus02psid92m .dta, clear 
list age in 1/1 

. pre'serve 
. replace age = age + 1000 
age was byte now int 
(4290 real changes made) 

list age in 1/1 

restore 
list age in 1/1 

As desired, the data have been returned to original values. 
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2.5.3 Wide and long forms for a dataset 

Some datasets may combine several observations into a single observation. For example, 
a single household observation may contain data for several household members, or a 
single individual observation may have data for each of several years. This format for 
data is called wide form. If instead these data are broken out so that an observation 
is for a distinct household member, or for a distinct individual-year pair, the data are 
said to be in long form. 

The reshape command is detailed in section 8 . 1 1 .  It converts data from wide form 
to long form and vice versa. This is necessary if an estimation command requires data 
to be in long form, say, but the original dataset is in wide form. The distinction is 
important especially for analysis of panel data and multinomial data. 

2.5 .4 Merging datasets 

The merge command combines two datasets to create a wider dataset, i.e., new variables 
from the second dataset are added to existing variables of the first dataset. Common 
examples are data on the same individuals obtained from two separate sources that then 
need to be combined, and data on supplementary variables or additional years of data. 

Merging two datasets involves adding information from a dataset on disk to a dataset 
in memory. The dataset in memory is known as the master dataset. 

Merging two datasets is straightforward if the datasets have the same number of 
observations and the merge is a line-to-line merge. Then line 10, for example, of one 
dataset is combined with line 10 of the other dataset to create a longer line 10. We 
consider instead a match-merge, where observations in the two datasets are combined 
if they have the same values for one or more identifying variables that are used to 
determine the match. In either case, when a match is made if a variable appears in 
both datasets, then the master dataset value is retained unless it is missing, in which 
case it is replaced by the value in the second dataset. If a variable exists only in the 
second dataset, then :t is added as a variable to the master dataset. 

To demonstrate a match-merge, we create two datasets from the dataset used in 
this chapter. The first dataset comprises every third observation with data on id,  
education, and earnings: 

• Create first dataset Yith every third observation 
. use mus02psid92m . dta,  clear 
. keep if mod(_n , 3 )  = =  0 
(2860 observations deleted) 

keep id education earnings 
list in 1/4,  clean 

educat-n earnings 
1 .  16 38708 
2 .  1 2  3265 
3 .  1 1  19426 
4 .  1 1  30000 

id 
3 
6 
9 

12 
quietly save merge1 .dta,  replace 
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The keep if modCn , 3 )  == 0 command keeps an observation if  the observation number 
(_n) is exactly divisible by 3, so every third observation is kept. Because id=_n for these 
data, by saving every third obse!'vation we are saving observations with id equal to 3, 
6, 9, . . . .  

The second dataset comprises every second observation with data on id, education, 
and hours: 

• Create second dataset Yith every second observation 
use mus02psid92m . dta, clear 

keep if mod(_n ,2 )  =� 0 
(2145 observations deleted) 

keep id education hours 
list in 1/4,  clean 

educat-n hours 
1 .  12 2008 
2 .  12 2200 
3 .  12 552 
4 .  17 3750 

id 
2 
4 
6 
8 

quietly save merge2.dta, replace 

Now we are saving observations with id equal to 2, 4, 6, . . . . 

Now we merge the two datasets by using the merge command. 

In our case, the clatasets differ in both the observations included and the variables 
included, though there is considerable overlap. vVe perform a match-merge on id to 
obtain 

• Merge tYo datasets Yith some observations and variables different 
clear 
use merge 1 .  dta 
sort id 
merge id using merge2.dta 
sort id 

list in 1/4·; · clean 

educat-n earnings 
1 .  12 
2 .  1 6  38708 
3 .  12 
4 .  12 3265 

id hours _merge 
2 2008 2 
3 1 
4 2200 2 
6 552 3 

Recall that observations from the master dataset have id equal to :3, 6, 9, . . .  , and 
observations from the second dataset have id equal to 2, 4, 6, . . . .  Data for education 
and earnings are always available because they are in the master dataset. But obser­
vations for hours come from the second dataset; they are available when id is 2, 4, 6 ,  
. . . and are missing otherwise. 

· 

merge creates a variable . .  merge, that takes on a value of 1 if the variables for an 
observation all come from the master dataset, a value of 2 if they all come from only 
the second dataset, and a value of 3 if for an observation some variables come from 
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the master and some from the second dataset. After using :nerge, you should tabulate 
.merge and check that the results match your expectations. For the example, we obtain 
the expected results: 

tab _merge 
_merge Freq. Percent Cum. 

715 2 5.00  25 .00  
2 1 , 430 50.00 75.00 
3 715 25.00 100 .00 

Total 2 , 860 100 .00 

There are several options when using merge. The update option varies the action 
merge takes when an observation i::; matched. By default, the master dataset i::; held 
inviolate-if update is specified, values from the master dataset are retained if the same 
variables are found in both datasets. However, the values from the merging dataset are 
used in cases where the variable is missing in the master dataset. The replace option, 
allowed only with the update option, specifies that even if the master dataset contains 
nonmissing values, they are to be replaced with corresponding v-alues from the merging 
dataset when corresponding values are not equal. A nonmissing value, however, will 
never be replaced with a missing value. 

2.5.5 Appending datasets 

The append command creates a longer dataset, with the observations from the second 
dataset appended after all the observations from the first dataset. If the same variable 
has different names in the .two datasets, the variable name in one of the datasets should 
be changed by using the rename command so that the names match. 

• Append tYo datasets Yith some observations and variables different 
clear 
use merge 1 .  dta 

append using merge2 . dta 
sort id 
list in 1/4, clean 

educat-n earnings 
1 .  12 
2 .  1 6  38708 
3 .  1 2  
4 .  1 2  3265 

id hours 
2 2008 
3 
4 2200 
6 

Now merge2 . dta is appended to the end of mergei . dta. The combined dataset has 
observations 3, 6, 9, . . .  , 4290 followed by observations 2, 4, 6, . . . , 4290. We then sort 
on id. Now both every second and every third observation is included, �o after sorting 
we have observations 2, 3, 4, 6, 8, 9, . . . .  Note, however, that no attempt has been made 
to merge the datasets. In particular, for the observation with id = 6, the hours data 
are missing. This is because this observation comes from the master dataset, which did 
not include hours as a variable, and there is no attempt to inerge the data. 
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In this example, to take full advantage of the data, we would need to merge the two 
datasets using the first dataset as the master, merge the two datasets using the second 
dataset as the master, and then append the two datasets. 

2.6 Graphical display of data 

Graphs visually demonstrate important features of the data. Different types of data 
require distinct graph formats to bring out these features. We emphasize methods for 
numerical data taking many values, particularly, nonparametric methods. 

2.6.1 Stata graph commands 

The Stata gTaph commands begin with the word graph ( i n  some cases, this is optional) 
followed by the graph plottype, usually twoway. We cover several leading examples 
but ignore the plottypes bar and pie  for categorical data. 

Example graph commands 

The basic graph commands are very short and simple to use. For example, 

use mus02psid92m.d ta, clear 

tYOYay scatter lnearns hours 

produces a scatterplot of lnearns on hours, shown in figure 2 . 1 .  Most graph commands 
support the if and in qualifiers, and some support weights. 

;!: -
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Figure 2 . 1 .  A basic scatterplot of log earnings on hours 

In practice, however, customizing is often desirable. For example, we may want to 
display the relationship between lnearns and hours by showing both the data scatter-
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plot and the ordinary least-squares (OLS) fi tted line on the same graph. Additionally, 
we may want to change the size of the scatterplot data points, change the width of the 
regression line, and provide a title for the graph. We type 

. * More advanced graphics command Yith tYo plots and Yith several options 

. graph tYOYay (scatter lnearns hours , msize(small) )  
> (lfit lnearns hours ,  lYidth(medthick) ) ,  
> title ( " Scatterplot and OLS fitted line")  

The two separate components sea tter and lfi  t are specified separately within paren­
theses. Each of these commands is given with one option, after the comma but within 
the relevant parentheses. The msize (small) option makes the scatterplot dots smaller 
than the default, and the lwidth(medthick) option makes the OLS fi.tted line thicker 
than the default. The titl e ( )  option for twoway appears after the last comma. The 
gTaph produced is shown in figure 2.2 .  

Scatterplot and OLS fitted line ::! ·  
: 

� -�----------�----------�----------� 20.00 4000 5000 ANN WORK HRS 
I o !nonms -- Flt1cd vduc5 I 

Figure 2 .2. A more elaborate scatterplot of log earnings on hours 

We often use lengthy graph commands that span multiple lines to produce template 
graphs that are better looking than those produced with default settings. In particular, 
these commands add titles and rescale the points, lines, and axes to a suitable size 
because the gTaphs printed in this book are printed in a much smaller space than a full­
page graph in landscape mode. These templates can be modifi.ed for other applications 
by changing variable names and title text. 

Saving and exporting graphs 

Once a graph is created, it can be saved. Stata uses the term save to mean saving the 
graph in Stata's internal graph format, as a file with the . gph extension. This can be 
d one by using the saving( )  option in a graph command or by typing graph save after 
the gTaph is created. When saved in this way, the graphs can be reaccessed and further 
manipulated at a later date. 
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Two or more Stata graphs can be combined into a single figure by using the graph 
combine command. For example, we save the first graph as graph1 . gph, save the second 
graph as graph2 . gpl: , and type the command 

• Combine graphs saved as graph1 . gph and graph2. gph 
graph combine graph1 graph2 

(output omitted ) 

Section 3.2. 7 _provides an example. 

The Stata internal graph format ( . gph) is not recognized by other programs, such 
as word processors. To save a graph in an external format, you would use the graph 
export command. For example, 

• Save graph as a 
'
windo1o1s meta-file 

graph export mygraph.1o1mf 
(output omitted) 

Various formats are available, including PostScript ( . ps  ) , Encapsulated PostScript 
( . eps ) , Windows Metafile ( . wmf) , PDF ( . pd f ) , and Portable Network Graphics ( . png) . 
The best format to select depends in part on what word processor is used; some trial 
and error may be needed. 

Learning how to use graph commands 

The Stata graph commands are extremely rich and provide an exceptional range of user 
control through a multitude of options. 

A good way to learn the possibilities is to create a graph interactively in Stata. For 
example, from the menus, select Graphics > Twoway graph (scatter, line, etc.) . 
In the Plots tab of the resulting dialog box, select Create . . .  , choose Scatter, provide 
a Y variable and an X variable, and then click on Marker properties. From the 
Symbol drop-down list, change the default to, say, Triangle. Similarly, cycle through 
the other options <:�J:ld change the default settings to something else. 

Once an initial graph is created, the point-and-click Stata Graph Editor allows 
further customizing of the graph, such as adding text and arrows wherever desired. 
This is an exceptionally powerful tool that we do not pursue here; for a summary, see 
[G] graph editor. The Graph Recorder can even save sequences of changes to apply 
to similar graphs created from different samples. 

Even given familiarity with Stata's graph commands, you may need to tweak a graph 
considerably to make it useful. For example, any graph that analyzes the earnings 
variable using all observations will run into problems because one observation has a 
large outlying value of $999,999. Possibilities in t_hat case are to drop outliers, plot with 
the yscale Clog) option, or use log earnings instead. 
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2.6.2 Box-and-whisker plot 

The graph box command produces a box-and-whisker plot that is a graphical way 
to display data on a single series. The boxes cover the interquartile range, from the 
lower quartile to the upper quartile. The whiskers, denoted by horizontal lines, extend 
to cover most or all the range of the data. Stata places the upper whisker at the 
upper quartile plus 1 . 5  times the interquartile range, or at the maximum of the data 
if this is smaller. Similarly, the lower whisker is the lower quartile minus 1 . 5  times the 
interquartile range, or the minimum should this be larger. Any data values outside the 
whiskers are represented with dots. Box-and-whisker plots can be especially useful for 
identifying outliers. 

The essential command for a box-and-whisker plot of the hours variable is 

• Simple box-and-Yhisker plot 
graph box hours 

(output omitted ) 

We want to present separate box plots of hours for each of four education groups 
by using the over 0 option. To make the plot more intelligible, we first provide labels 
for the four education categories as follows: 

. use mus02psid92m .dta,  clear 

. label define edtype 1 "< High School" 2 "High School" 3 "Some College" 
> 4 "College Degree" 

. label values edcat edtype 

The scale ( 1 .  2) graph option is added for readability; it increases the size of text, 
markers, and line widths (by a multiple 1 . 2 ) .  The marker ()  option is added to reduce 
the size of quantities within the box; the ytitle 0 option is used to present the title; 
and the yscale C ti tlegap C *5 ) )  option is added to increase the gap between the y-axis 
title and the tick labels. We have 

. • Box and Yhisker plot of single variable over several categories 

. graph box hours, over(edcat) scale ( 1 . 2) marker ( l , msize (vsmall) )  
> ytitle( "Annual hours YOrked by education") yscale(titlegap ( • 5) )  

The result is given in  figure 2 .3 .  The labels for edcat, rather than the values, are 
automatically given, making the graph much more readable. The filled-in boxes present 
the interquartile range, the intermediate line denotes the median, and data outside the 
whiskers appear as dots. For these data, annual hours are clearly lower for the lowest 
schooling group, and there are quite a few outliers. About 30 individuals appear to 
work in excess of 4,000 hours per year. 
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Figure 2.3 .  Box-and-whisker plots of annual hours for four categories of educational 
attainment 

2.6.3 Histogram 

The probability mass function or density function can be estimated using a histogram 
produced by the histogram command. The command can be used with if and in 
qualifiers and with weights. The key options are width (#)  to set the bin width, 
bin(#) to set the number of bins, start (#)  to set the lower limit of the first bin, 
and discrete to indicate that the data are discrete. The default number of bins is 
min( .../N, 10 In N/ In 10). Other options overlay a fi.tted normal density (the normal 
option) or a kernel density estimate (the kdensi ty option). 

For discrete data taking relatively few values, there is usually no need to use the 
options. 

· 

For continuous data or for discrete data taking many values, it can be necessary 
to use options because the Stata defaults set bin widths that are not nicely rounded 
numbers and the number of bins might also not be desirable. For example, the output 
from histogram lnearns states that there are 35 bins, a bin width of 0.268, and a start 
value of 4.43. A better choice may be 

. * Histogram Yith bin Yidth and start value set 

. histogram lnearns , Yidth ( 0.25 )  start ( 4.0 )  
(bin�40, start�4 , Yidth� .25) 

(Continued on next page) 
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Figure 2.4. A histogram for log earnings 

2.6.4 Kernel density plot 

For continuous data taking many values, a better alternative to the histogram is  a kernel 
density plot. This provides a smoother version of the histogram in two ways: First, it 
directly connects the midpoints of the histogram rather than forming the histogram 
step function. Second, rather than giving each entry in a bin equal weight , it gives more 
weight to data that are closest to the point of evaluation. 

Let f(x) denote the density. The kernel density estimate of f(x) at x = x0 is 

f(xo) = .2_ ""� K (Xi - xo ) 
Nh u.,=l h 

(2 . 1 )  

where K(- )  i s  a kernel function that places greater weight on points Xi close to  x0 •  
More precisely, K(z) i s  symmetric around zero, integrates to one, and either K(z)  = 0 
if lzl 2: z0 (for some zo) or z -+ 0 as z -+ oo. A histogram with a bin width of 
2h evaluated at x0 can be shown to be the special case K (z) = l/2 if l z l  < 1, and 
K (z) = 0 otherwise. 

A kernel density plot is obtained by choosing a kernel function, K(- ) ; choosing a 
width, h; evaluating }(xo) at a range of values of x0; and plotting f(x0 ) against these 
xo values. 

The kdensi ty command produces a kernel density estimate. The command can 
be used with if and in qualifiers and with weights. The default kernel function is 
the Epanechnikov, which sets K (z) = (3/4)(1 - z2/5)/"1!'5 if l z l  < \15, and K (z) = 0 
otherwise. The kerne 1 C )  option allows other kernels to be chosen, but unless the width 
is relatively small, the choice of kernel makes little difference. The default window 
width or bandwidth is h = 0.9m/n115 , where m = min( .s,, iqr,/1 .349) and iqr, is 
the interquartile range of x .  The bwidth (#)  option allows a different width (h) to be 
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specified, with larger choices of h leading to smoother density plots. The n ( #) option 
changes the number of evaluation points, x0, from the default of min(N, 50) .  Other 
options overlay a fitted normal density (the normal option) or a fitted t density (the 
student (#)  option). 

The output from kdensi ty lnearns states that the Epanechnikov kernel is used and 
the bandwidth equals 0 .1227. If we desire a smoother density estimate with a bandwidth 
of 0 .2 ,  one overlaid by a fitted normal density, we type the command 

* Kernel density plot Yith bandYidth set and fitted normal density overlaid 
kdensity lnearns , bYidth ( 0 . 20) normal n(4000) 

which produces the gTaph in figure 2 .5 .  This graph shows that the kernel density is 
more peake_d than the normal and is o;omewhat skewed. 

t 0 

Kernel density estimate 

lnoorns 1-- Kornol donslty ostlmoto I -- Normal donslly 

kllf£1il'l "' opl:i.nflC:hnlkov, �mlwH:Ith "- a 2000 

Figure 2 .5 .  The estimated density of log earnings 

The following code instead presents a histogram overlaid by a kernel density estimate. 
The histogram bin width is set to 0.25,  the kernel density bandwidth is set to 0.2 using 
the kdenopts ( ) option, and the kernel density plot line thickness is increased using the 
lwidth(medthick) option. Other options used here were explained in section 2 .6 .2 .  ·we 
have 

* Histogram and nonparametric kernel density estimate 
histogram lnearns if lnearns > 0 ,  Yidth( 0 . 25)  kdensity 

> kdenopts (bYidth(0 .2 )  lYidth(medthick) )  
> plotregion(style (none ) )  scale ( 1 .2)  
> title(" Histogram and density for log earnings " )  
> x title("Log annual earnings " ,  size (medla:rge ) )  xscale(titlegap(•5 ) )  
> ytitle ( " Histogram and density" , size (medlarge) )  yscale (titlegap(•5) )  
(bin=38 ,  start=4 .4308167, Yidth= .25) 
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Histogram and density for log earnings 

Log annual earnings 

Figure 2.6. Histogram and kernel density plot for natural logarithm of earnings 

The result is given in figure 2.6. Both the histogram and the kernel density estimate 
indicate that the natural logarithm of earnings has a density that is mildly left-skewed. 
A similar figure for the level of earnings is very right-skewed. 

2.6.5 Twoway scatterplots and fitted lines 

As we saw in figure 2.1 , scatterplots provide a quick look at the relationship between 
two variables. 

For scatterplots with discrete data that take on few vakes, it can be necessary to 
use the j itter()  option. This option adds random noise so that points are not plotted 
on top of one another; see section 14.6.4 for an example. 

It can be useful to additionally provide a fitted curve. Stata provides several pos­
sibilities for estimating a global relationship between y against x, where by global we 
mean that a single relationship is estimated for all observations, and then for plotting 
the fitted values of y against x.  

The twoway lfi t command does so for a fitted OLS regression line, the twoway 
qfi t command does so for a fitted quadratic regression curve, and the twoway fpfi t 
command does so for a curve fitted by fractional polynomial regression. The related 
twoway commands lfi  tci,  qfi tci, and fpfi tci additionally provide confidence bands 
for predicting the conditional mean E(ylx) (by using the stdp option) or for forecasting 
of the actual value of y :x  (by using the stdf option) . 

For example, we may want to provide a scatterplot and :E.tted quadratic with confi­
dence bands for the forecast value of y lx  (the result is shown in figure 2.7) : 



2.6.6 Lowess, kernel, local ·linear, and nearest-neighbor regression 

* Two-way scatterplot and quadratic regression curve with 95/. ci for y l x  
twoway (qfitci lnearns hour s ,  stdf) (scatter lnearns hours , msize( small ) )  
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SE�.:J 95% Cl -- Fittod v.:tluos 
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Figure 2.7 . Twoway scatterplot and fitted quadrat ic with confidence bands 

2.6.6 lowess, kernel, local linear, and nearest-neighbor regression 
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An alternative curve-fitting approach is to use nonparametric methods that fit a local 
relationship between y and x, where by local we mean that separate fitted relationships 
are obtained at different values of x. There are several methods. All depend on a 
bandwidth parameter or smoothing parameter. There are well-established methods 
to automatically select the bandwidth parameter, but these choices in practice can 
undersmooth or oversmooth the data so that the bandwidth then needs to be set by 
using the bwid thO option. 

An easily understood example is a median-band plot. The range of x is broken 
into, say, 20 intervals; the medians of y and x in each interval are obtained; and the 
20 medians of y an;· plotted against the 20 medians of x, with connecting lines between 
the points. The twoway mband command does this, and the related twoway mspline 
command uses a cubic spline to obtain a smoother version of the median-band plot. 

Most nonparametric methods instead use variants of local regression. Consider the 
regression model y = m(x) + u,  where x is a scalar and the conditional mean function 
m(-) is not specified. A local regTession estimate of m(x) at x = xo is a local weighted 
average of y;, i = 1, . . . , N, that places great weight on observations for which X; is close 
to x0 and little or no weight on observations for which X; is far from x0• Formally, 

N 
m(xo) = � .  w(x;., xo , h)y; L....., ,=l 

where the weights w(x.i, xo, h) sum over i to one and decrease as the distance between 
X; and xo increases. As .the bandwidth parameter h increases, more weight is placed on 
observations for which x, is close to Xo·  
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A plot is obtained by choosing a weighting function, w(x.,, xo, h) ;  choosing a band­
width, h; evaluating m( xo) at a range of values of xo; and plotting m( xo) against these 
xo values. 

The kth-nearest-neighbor estimator uses just the k observations for which x; is clos­
est to x0 and equally weights these k closest values. This estimator can be obtained by 
using the user-written t:nnreg command (Salgado-Ugarte, Shimizu, and Taniuchi 1996) .  

Kernel regTession :1ses the weight w(x, , xo , h) = K{(x.; - xo)/h}/ l:�1 K{ (x; -
x0)/h}, where K( · )  is a kernel function defined after (2 . 1 ) .  This estimator can be 
obtained by using the user-written kernreg command (Salgado-Ugarte, Shimizu, and 
Taniuchi 1996). It can also be obtained by using the lpoly command, which we present 
next. 

The kernel regression estimate at x = xo can equivalently be obtained by minimizing 
L:,. K { (xi-xo)/ h} (Y; -a0)2 ,  which is weighted regression on a constant where the kernel 
weights are largest for observations with x; close to xo. The local linear estimator 
additionally includes a slope coe�cient and at x = x0 minimizes 

""""' N ( X·i - Xo ) ., 
� ·- I< -·-1- {y; - ao - /3o(x ; - xo) } -'·-1 ). (2 .2) 

The local polynomial estimator of degree p more generally uses a polynomial of degree p 

in (x, - x0) in (2.2) .  This estimator is obtained by using lpoly. The degre e ( # )  option 
specifies the degree p, the kerne l ( )  option specifies the kernel, the bwidth ( # )  option 
specifies the kernel bandwidth h, and the generate ( )  option saves the evaluation points 
xo and the estimates m(x0). The local linear estimator with p � 1 does much better 
than the preceding methods at estimating m(xo) at values of xo near the endpoints of 
the range of x, as it allows for any trends near the endpoint:;. 

The locally weighted scatterplot smoothing estimator (lowess) is a variation of the 
local linear estimator that uses a variable bandwidth, a tricubic kernel, and down weights 
observations with large residuals (using a method that greatly increases the computa­
tional burden). This estimator is obtained by using the lowess command. The band­
width gives the fraction of the observations used to calculate m(xo) in the middle of the 
data, with a smaller fraction used towards the endpoints. The default value of 0.8 can 
'be changed by using che bwid th ( # )  option, so unlike the other methods, a smoother 
plot is obtained by increasing the bandwidth. 

The following example illustrates the relationship between log earnings and hours 
worked. The one graph includes a scatterplot (sea tter ) , a fitted lowess curve (lowess ) , 
and a local linear curve (lpoly). The command is lengthy because of the detailed 
formatting commands used to produce a nicely labeled and formatted gTaph. The 
msize( tiny) option is used to decrease the size of the dots in the scatterplot. The 
1 width (med thick) option is used to increase the thickness of lines, and the clstyle (p 1 )  
option changes the style ofthe line for lowess. The titl e ( )  option provides the overall 
title for the graph. The xtitle ( )  and ytitl e O  options provide titles for the x axis 
and y axis, and the size (medlarge) option defines the size of the text for these titles. 
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The legend ( )  options place the graph legend at  four o'clock (pos (4) ) with text size 
small and provide the legend labels. We have 

. • Scatterplot Yith loYess and local linear nonparametric regression 

. graph tYOYay ( s catter lnearns hour s ,  msize(tiny ) )  
> (loYess lnearns hour s ,  clstyle(pl) lYidth(medthi"ck))  
> (lpoly lnearns hours, kerne l(epan2) degree(l)  lYidth(medthick) 
> bYidth (500) ) ,  plotregion (style (none) ) 
> titl e ( "  Scatterplot, loYess, and local linear regression") 
> xtitle ( " Annual hour s " ,  size(medlarge) )  
> ytitle( "Natural logarithm of annual earnings " ,  size(medlarge) )  
> legend( pos(4) ring (O)  col ( l ) )  legend(size (small) )  
> legend(labe ::.. ( l  "Actual Data") label(2 "LoYes s " )  label(3  "Local linear " ) )  

Scatterplot, lowess. and local linear regression 
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Figure 2.8. Scatterplot, lowess, and local linear curves for natural logarithm of earnings 
plotted against hours 

From figure 2.8, thescatterplot, fitted OLS line, and nonparametric regression all in­
dicate that log earnings increase with hours until about 2 ,500 hours and that a quadratic 
relationship may be appropriate. The graph uses the default bandwidth setting for 
lowess and greatly increases the lpoly bandwidth from its automatically selected value 
of 84.17 to 500. Even so, the local linear curve is too variable at high hours where the 
data are sparse. At low hours, however, the lowess estimator overpredicts while the 
local linear estimator does not. 

2.6. 7 Multiple scatterplots 

The graph rna trix command provides separate bivariate scatterplots between several 
variables. Here we produce bivariate scatterplots (shown in figure 2.9) of lnearns, 
hours,  and age for each of the four education categories: 

• Multiple scatterplots 
label variable age "Age" 

label variable · lnearns "Log earnings" 
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label variable hours "Annual hours" 
graDh matrix lnearns hours age.  bv (edcat) msize(sma.ll) 

Grophs by RECODE of education (COMPLETED EDUCATION) 

.: Htgh School . · · 

0 200C4000JOOO 

Figure 2.9. Multiple scatterplots for each level of education 

Stata does not provide three-dimensional graphs, such as that for a nonparametric 
bivariate density estimate or for nonparametric regTession of one variable on two other 
variables. 

2 .7 Stata resources 

The key data-management references are [U] Users Guide and [o] Data Management 
Reference Manual. Useful online help categories include 1) double ,  string, and 
format for data types; 2) clear, use,  insheet, infile, and outsheet for data in­
pu� � summarize, list ,  label, tabulate, generate , egen, keep, drop, recode, by, 
sort, merge, append, and collapse for data management; and 4) graph, graph box,  
histogram, kdensi ty, twoway, lowess,  and graph rna trix for graphical analysis. 

The Stata graphics commands were greatly enhanced in version 8 and are still rel­
atively underutilized. The Stata Graph Editor is new to version 10; see [G] graph 
editor. A Visual Glide to Stata Graphics by Mitchell (2008) provides many hundreds 
of template gTaphs with the underlying Stata code and an explanation for each. 

2 .8 Exercises 
1. Type the command display %10 . Sf 123 . 321 .  Compare the results with those 

you obtain when you change the format %10 . Sf to, respectively, %10 .  5e ,  %10 . 5g, 
%-10 . 5f, %10  , 5f ,  and when you do not specify a format. 
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2 .  Consider the example of section 2.3 except with the variables reordered. Specif­
ically, the variables are in the order age, name ,  income, and female. The three 
observations are 29 "Barry" 40 . 990 0; 30 " Carrie" 37 . 000  1 ;  and 31 "Gary" 
48 . 000 0. Use input to read these data, along with names, into Stata and list 
the results. Use a text editor to create a comma-separated values file that includes 
variable names in the first line, read this file into Stata by using insheet, and 
list the results. Then drop the first line in the text file, read in the data by using 
inshee� with variable names assig11ed, and list the results. Finally, replace the 
commas in the text file with blanks, read the data in by using infix, and list the 
results. 

3 .  Consider the dataset in section 2.4. The er32049 variable is the last known 
marital status. Rename this variable as marsta tus, give the variable the label 
"marital status" , and tabulate marsta tus. From the code book, marital status is 
married ( 1) ,  never married (2 ) ,  widowed ( 3) ,  divorced or annulment ( 4) ,  separated 
(5 ) ,  not answered or do not know (8) ,  and no marital history collected (9) . Set 
marsta tus to missing where appropriate. Use label define and label values to 
provide descriptions for the remaining categories, and tabulate marsta tus. Create 
a binary indicator variable equal to 1 if the last known marital otatm; il:; married, 
and equal to 0 otherwise, with appropriate handling of any missing data. Provide 
a summary of earnings by marital status. Create a set of indicator variables for 
marital status based on marsta tus. Create a set of variables that interact these 
marital status indicators with earnings. 

4. Consider the dataset in section 2.6. Create a box-and-whisker plot of earnings (in 
levels) for all the data and for each year of educational attainment (use variable 
education). Create a histogram of earnings (in levels) using 100 bins and a 
kernel density estimate. Do earnings in levels appear to be right-skewed? Create 
a scatterplot of earnings against education. Provide a single figure that Ul:;eS 
sea tterplot, lfi t, and lowess of earnings against education. Add titles for 
the axes and graph heading. 

5. Consider the dataset in section 2.6 .  Create kernel density plots for lnearns using 
the kernel (epan2) option with kernel K(z) = (3/4) (1 - z2 /5) for [ z [  < 1, and 
using the kernel ( epan2) option with kernel K(z) = 1/2 for [ z [  < 1. Repeat with 
the bandwidth increased from the default to 0.3. What makes a bigger difference, 
choice of kernel or choice of bandwidth? The comparison is easier if the four 
graphs are saved using the saving( )  option and then combined using the graph 
combine command. 

6. Consider the dataset in section 2.6 .  Perform lowess regression of lnearns on hours 
using the default bandwidth and using bandwidth of 0.01. Does the bandwidth 
make a difference? A moving average of y after data are sorted by x is a simple 
case of nonparametric regTession of y on x. Sort the data by hours. Create a 
centered 15-period moving average of lnearns with ith observation yma., = 1/25 
�;��212 y,+j . This is easiest using forvalues. Plot this moving average against 
hours using the twoway connected graph command. Compare to the lowess plot. 


