Suppose given a univariate time series data \(x_t\), \(t=1,\ldots,T\), where \(t\) refers to time and \(T\) to the sample size. We would like to have a statistical/probability model \(\{X_t\}_{t\in \mathbb{Z}}\) for the series, where \(X_t\)’s are random variables. Having a statistical model, we can use it for forecasting (prediction), which is one of the basic tasks of time series analysis.
Note: We shall focus on the situations where there is some dependence across times \(t\). Typically, there should be some “physical” reason for temporal dependence. Examples?
This lecture is about a classical approach to time series modeling based on the decomposition (possibly after a preliminary transformation): \[ X_t = T_t + S_t + Y_t,\quad t\in \mathbb{Z}, \] where \(\{T_t\}_{t\in\mathbb{Z}}\) is a (typically deterministic) model for trend, \(\{S_t\}_{t\in\mathbb{Z}}\) is a (typically deterministic periodic) model for seasonal variations, and \(\{Y_t\}_{t\in\mathbb{Z}}\) is a stationary time series model.
A first code block:
cd "C:\Users\micha\OneDrive\Documents\Research\TimeSeries\do-files"
use ../data/NelsonPlosserData.dta, replace
keep l* year bnd
foreach v of var bnd-lsp500{
gen time_`v' = .
replace time_`v' = year if `v' ~= .
quietly summarize time_`v'
replace time_`v' = time_`v' - r(min)
}
(111 missing values generated)
(71 real changes made)
(71 real changes made)
(111 missing values generated)
(62 real changes made)
(62 real changes made)
(111 missing values generated)
(62 real changes made)
(62 real changes made)
(111 missing values generated)
(62 real changes made)
(62 real changes made)
(111 missing values generated)
(111 real changes made)
(111 real changes made)
(111 missing values generated)
(81 real changes made)
(81 real changes made)
(111 missing values generated)
(81 real changes made)
(81 real changes made)
(111 missing values generated)
(82 real changes made)
(82 real changes made)
(111 missing values generated)
(111 real changes made)
(111 real changes made)
(111 missing values generated)
(71 real changes made)
(71 real changes made)
(111 missing values generated)
(71 real changes made)
(71 real changes made)
(111 missing values generated)
(82 real changes made)
(82 real changes made)
(111 missing values generated)
(102 real changes made)
(102 real changes made)
(111 missing values generated)
(100 real changes made)
(100 real changes made)
A second, later code block:
* Table & Test for ONE Variable
local x = "lrgnp"
local k = 1
* Dickey-Fuller
dfuller `x', trend reg lags(`k')
running C:\Users\micha\OneDrive\Documents\Research\TimeSeries\rmd-files\prof> .do ...
Augmented Dickey-Fuller test for unit root Number of obs = 60
---------- Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
------------------------------------------------------------------------------
Z(t) -2.994 -4.128 -3.490 -3.174
------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.1338
------------------------------------------------------------------------------
D.lrgnp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lrgnp |
L1. | -.1753423 .0585665 -2.99 0.004 -.292665 -.0580196
LD. | .4188873 .1209448 3.46 0.001 .1766058 .6611688
_trend | .0056465 .0018615 3.03 0.004 .0019174 .0093757
_cons | .8134145 .2679886 3.04 0.004 .2765688 1.35026
------------------------------------------------------------------------------